Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glob Environ Change ; 82: 1-14, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693692

RESUMO

Deltas play a critical role in the ambition to achieve global sustainable development given their relatively large shares in population and productive croplands, as well as their precarious low-lying position between upstream river basin development and rising seas. The large pressures on these systems risk undermining the persistence of delta societies, economies, and ecosystems. We analyse possible future development in 49 deltas around the globe under the Shared Socio-economic and Representative Concentration Pathways until 2100. Population density, urban fraction, and total and irrigated cropland fraction are three to twelve times greater in these deltas, on average, than in the rest of the world. Maximum river water discharges are projected to increase by 11-33 % and river sediment discharges are projected to decrease 26-37 % on average, depending on the scenario. Regional sea-level rise reaches almost 1.0 m by 2100 for certain deltas in the worst-case scenario, increasing to almost 2.0 m of relative rise considering land subsidence. Extreme sea levels could be much higher still-reaching over 4.0 m by 2100 for six of the 49 deltas analysed. Socio-economic conditions to support adaptation are the weakest among deltas with the greatest pressures, compounding the challenge of sustainable development. Asian and African deltas stand out as having heightened socio-economic challenges-huge population and land use pressures in most Asian deltas and the Nile delta; low capacity for adaptation in most African deltas and the Irrawaddy delta. Although, deltas in other parts of the world are not immune from these and other pressures, either. Because of unique pressures and processes operating in deltas, as in other "hotspots" such as small islands, mountains, and semi-arid areas, we recommend greater consideration and conceptualisation of environmental processes in global sustainable development agendas and in the Integrated Assessment Models used to guide global policy.

2.
Sci Total Environ ; 829: 154547, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35302026

RESUMO

The Ganges-Brahmaputra-Meghna (GBM) delta is one of the world's largest deltas. It is currently experiencing high rates of relative sea-level rise of about 5 mm/year, reflecting anthropogenic climate change and land subsidence. This is expected to accelerate further through the 21st Century, so there are concerns that the GBM delta will be progressively submerged. In this context, a core question is: can sedimentation on the delta surface maintain its elevation relative to sea level? This research seeks to answer this question by applying a two-dimensional flow and morphological model which is capable of handling dynamic interactions between the river and floodplain systems and simulating floodplain sedimentation under different flow-sediment regimes and anthropogenic interventions. We find that across a range of flood frequencies and adaptation scenarios (including the natural polder-free state), the retained volume of sediment varies between 22% and 50% of the corresponding sediment input. This translates to average rates of sedimentation on the delta surface of 5.5 mm/yr to 7.5 mm/yr. Hence, under present conditions, sedimentation associated with quasi-natural conditions can exceed current rates of relative sea-level rise and potentially create new land mass. These findings highlight that encouraging quasi-natural conditions through the widespread application of active sediment management measures has the potential to promote more sustainable outcomes for the GBM delta. Practical measures to promote include tidal river management, and appropriate combinations of cross-dams, bandal-like structures, and dredging.


Assuntos
Mudança Climática , Rios , Inundações , Rios/química , Elevação do Nível do Mar
3.
J Environ Manage ; 284: 112072, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33578047

RESUMO

Coastal communities are prone to crises. Repeated exposure to crises constrains the ability of residents to access basic needs such as health, water and food, and may increase their vulnerability levels. In response, communities develop coping strategies such as depoldering (temporary breaching of embankments for TRM: tidal rivers management) and anti-aquaculture movements. However, existing research has not adequately explored the relationship between coping strategies and vulnerability. Theoretical literature is characterized by ambiguity on how various geocentric and anthropocentric factors affect vulnerability in the presence of community-developed coping strategies. Therefore, to advance theoretical knowledge in this field, this article first conceptualizes an integrated framework on the association between vulnerability and coping strategies by merging anthropocentric and geocentric approaches. It then uses mixed methods drawn from social science (surveys, semi-structured interviews), geography (spatial tools) and statistics (multiple regression) on data collected from the coastal belt of Bangladesh to demonstrate that coping strategies may have an effect on vulnerability in crisis-prone coastal regions. The significance of this study is that it demonstrates how the association between vulnerability and coping strategies is likely to be nuanced: depending on a) the type of vulnerability (food/water/health), and b) the coping strategy (TRM vs. anti-aquaculture movements). Different coping strategies are associated with different kinds of vulnerability and these relationships depend on local context (other anthropocentric and geocentric variables). Community movements against aquaculture could reduce food vulnerability, whereas TRM may reduce water vulnerability. Reduction in health vulnerability may instead be associated with urbanization and infrastructure development.


Assuntos
Adaptação Psicológica , Urbanização , Bangladesh , Geografia
4.
Sci Total Environ ; 643: 1054-1064, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189522

RESUMO

The physical sustainability of deltaic environments is very much dependent on the volume of water and sediment coming from upstream and the way these fluxes recirculate within the delta system. Based on several past studies, the combined mean annual sediment load of the Ganges-Brahmaputra-Meghna (GBM) systems has previously been estimated to vary from 1.0 to 2.4 BT/year which can be separated into components flowing from the Ganges (260 to 680 MT/year) and Brahmaputra (390 to 1160 MT/year). Due to very limited data and small contribution of the Meghna system (6-12 MT/year) to the total sediment flux of the GBM system, the data of the Meghna is not considered in the analysis assuming the sediment flux from GB system as the sediment flux of GBM. However, in this paper our analysis of sediment concentration data (1960-2008) collected by Bangladesh Water Development Board shows that the sediment flux is much lower: 150 to 590 MT/year for the Ganges versus 135 to 615 MT/year for the Brahmaputra, with an average total flux around 500 MT/year. Moreover, the new analysis provides a clear indication that the combined sediment flux delivered through these two major river systems is following a declining trend. In most of the planning documents in Bangladesh, the total sediment flux is assumed as a constant value of around 1 billion tons, while the present study indicates that the true value may be around 50% lower than this (with an average decreasing trend of around 10 MT/year).

5.
Sci Total Environ ; 642: 105-116, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29894869

RESUMO

Regular sediment inputs are required for deltas to maintain their surface elevation relative to sea level, which is important for avoiding salinization, erosion, and flooding. However, fluvial sediment inputs to deltas are being threatened by changes in upstream catchments due to climate and land use change and, particularly, reservoir construction. In this research, the global hydrogeomorphic model WBMsed is used to project and contrast 'pristine' (no anthropogenic impacts) and 'recent' historical fluvial sediment delivery to the Ganges-Brahmaputra-Meghna, Mahanadi, and Volta deltas. Additionally, 12 potential future scenarios of environmental change comprising combinations of four climate and three socioeconomic pathways, combined with a single construction timeline for future reservoirs, were simulated and analysed. The simulations of the Ganges-Brahmaputra-Meghna delta showed a large decrease in sediment flux over time, regardless of future scenario, from 669 Mt/a in a 'pristine' world, through 566 Mt/a in the 'recent' past, to 79-92 Mt/a by the end of the 21st century across the scenarios (total average decline of 88%). In contrast, for the Mahanadi delta the simulated sediment delivery increased between the 'pristine' and 'recent' past from 23 Mt/a to 40 Mt/a (+77%), and then decreased to 7-25 Mt/a by the end of the 21st century. The Volta delta shows a large decrease in sediment delivery historically, from 8 to 0.3 Mt/a (96%) between the 'pristine' and 'recent' past, however over the 21st century the sediment flux changes little and is predicted to vary between 0.2 and 0.4 Mt/a dependent on scenario. For the Volta delta, catchment management short of removing or re-engineering the Volta dam would have little effect, however without careful management of the upstream catchments these deltas may be unable to maintain their current elevation relative to sea level, suggesting increasing salinization, erosion, flood hazards, and adaptation demands.

6.
Environ Sci Process Impacts ; 17(9): 1587-600, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26290168

RESUMO

We employ a climate-driven hydrological water balance and sediment transport model (HydroTrend) to simulate future climate-driven sediment loads flowing into the Ganges-Brahmaputra-Meghna (GBM) mega-delta. The model was parameterised using high-quality topographic data and forced with daily temperature and precipitation data obtained from downscaled Regional Climate Model (RCM) simulations for the period 1971-2100. Three perturbed RCM model runs were selected to quantify the potential range of future climate conditions associated with the SRES A1B scenario. Fluvial sediment delivery rates to the GBM delta associated with these climate data sets are projected to increase under the influence of anthropogenic climate change, albeit with the magnitude of the increase varying across the two catchments. Of the two study basins, the Brahmaputra's fluvial sediment load is predicted to be more sensitive to future climate change. Specifically, by the middle part of the 21(st) century, our model results suggest that sediment loads increase (relative to the 1981-2000 baseline period) over a range of between 16% and 18% (depending on climate model run) for the Ganges, but by between 25% and 28% for the Brahmaputra. The simulated increase in sediment flux emanating from the two catchments further increases towards the end of the 21(st) century, reaching between 34% and 37% for the Ganges and between 52% and 60% for the Brahmaputra by the 2090s. The variability in these changes across the three climate change simulations is small compared to the changes, suggesting they represent a significant increase. The new data obtained in this study offer the first estimate of whether and how anthropogenic climate change may affect the delivery of fluvial sediment to the GBM delta, informing assessments of the future sustainability and resilience of one of the world's most vulnerable mega-deltas. Specifically, such significant increases in future sediment loads could increase the resilience of the delta to sea-level rise by giving greater potential for vertical accretion. However, these increased sediment fluxes may not be realised due to uncertainties in the monsoon related response to climate change or other human-induced changes in the catchment: this is a subject for further research.


Assuntos
Mudança Climática , Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Poluição da Água/estatística & dados numéricos , Índia , Modelos Teóricos , Rios , Temperatura , Poluição da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA