Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Neurodegener ; 19(1): 59, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090623

RESUMO

BACKGROUND: Multiple lines of evidence support peripheral organs in the initiation or progression of Lewy body disease (LBD), a spectrum of neurodegenerative diagnoses that include Parkinson's Disease (PD) without or with dementia (PDD) and dementia with Lewy bodies (DLB). However, the potential contribution of the peripheral immune response to LBD remains unclear. This study aims to characterize peripheral immune responses unique to participants with LBD at single-cell resolution to highlight potential biomarkers and increase mechanistic understanding of LBD pathogenesis in humans. METHODS: In a case-control study, peripheral mononuclear cell (PBMC) samples from research participants were randomly sampled from multiple sites across the United States. The diagnosis groups comprise healthy controls (HC, n = 159), LBD (n = 110), Alzheimer's disease dementia (ADD, n = 97), other neurodegenerative disease controls (NDC, n = 19), and immune disease controls (IDC, n = 14). PBMCs were activated with three stimulants (LPS, IL-6, and IFNa) or remained at basal state, stained by 13 surface markers and 7 intracellular signal markers, and analyzed by flow cytometry, which generated 1,184 immune features after gating. RESULTS: The model classified LBD from HC with an AUROC of 0.87 ± 0.06 and AUPRC of 0.80 ± 0.06. Without retraining, the same model was able to distinguish LBD from ADD, NDC, and IDC. Model predictions were driven by pPLCγ2, p38, and pSTAT5 signals from specific cell populations under specific activation. The immune responses characteristic for LBD were not associated with other common medical conditions related to the risk of LBD or dementia, such as sleep disorders, hypertension, or diabetes. CONCLUSIONS AND RELEVANCE: Quantification of PBMC immune response from multisite research participants yielded a unique pattern for LBD compared to HC, multiple related neurodegenerative diseases, and autoimmune diseases thereby highlighting potential biomarkers and mechanisms of disease.


Assuntos
Leucócitos Mononucleares , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença de Parkinson/imunologia , Doença de Parkinson/metabolismo , Doença por Corpos de Lewy/imunologia , Masculino , Feminino , Idoso , Estudos de Casos e Controles , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/imunologia , Biomarcadores/metabolismo , Pessoa de Meia-Idade , Estudos de Coortes , Idoso de 80 Anos ou mais , Corpos de Lewy/patologia , Corpos de Lewy/metabolismo , Análise de Célula Única/métodos
2.
Blood Adv ; 8(6): 1474-1486, 2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38295285

RESUMO

ABSTRACT: CD19 chimeric antigen receptor (CAR) T-cell therapy has proven highly effective for treating relapsed/refractory mantle cell lymphoma (MCL). However, immune effector cell-associated neurotoxicity syndrome (ICANS) remains a significant concern. This study aimed to evaluate the clinical, radiological, and laboratory correlatives associated with ICANS development after CD19 CAR T-cell therapy in patients with MCL. All patients (N = 26) who received standard-of-care brexucabtagene autoleucel until July 2022 at our institution were evaluated. Laboratory and radiographic correlatives including brain magnetic resonance imaging (MRI) and electroencephalogram (EEG) were evaluated to determine the clinical impact of ICANS. Seventeen (65%) patients experienced ICANS after treatment, with a median onset on day 6. Ten (38%) patients experienced severe (grade ≥3) ICANS. All patients with ICANS had antecedent cytokine release syndrome (CRS), but no correlation was observed between ICANS severity and CRS grade. Overall, 92% of EEGs revealed interictal changes; no patients experienced frank seizures because of ICANS. In total, 86% of patients with severe ICANS with postinfusion brain MRIs demonstrated acute neuroimaging findings not seen on pretreatment MRI. Severe ICANS was also associated with higher rates of cytopenia, coagulopathy, increased cumulative steroid exposure, and prolonged hospitalization. However, severe ICANS did not affect treatment outcomes of patients with MCL. Severe ICANS is frequently associated with a range of postinfusion brain MRI changes and abnormal EEG findings. Longer hospitalization was observed in patients with severe ICANS, especially those with abnormal acute MRI or EEG findings, but there was no discernible impact on overall treatment response and survival.


Assuntos
Linfoma de Célula do Manto , Síndromes Neurotóxicas , Humanos , Adulto , Linfoma de Célula do Manto/terapia , Imunoterapia Adotiva/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Encéfalo , Síndrome da Liberação de Citocina
3.
Science ; 376(6590): eabi9591, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35258337

RESUMO

In this work, we find that CD8+ T cells expressing inhibitory killer cell immunoglobulin-like receptors (KIRs) are the human equivalent of Ly49+CD8+ regulatory T cells in mice and are increased in the blood and inflamed tissues of patients with a variety of autoimmune diseases. Moreover, these CD8+ T cells efficiently eliminated pathogenic gliadin-specific CD4+ T cells from the leukocytes of celiac disease patients in vitro. We also find elevated levels of KIR+CD8+ T cells, but not CD4+ regulatory T cells, in COVID-19 patients, correlating with disease severity and vasculitis. Selective ablation of Ly49+CD8+ T cells in virus-infected mice led to autoimmunity after infection. Our results indicate that in both species, these regulatory CD8+ T cells act specifically to suppress pathogenic T cells in autoimmune and infectious diseases.


Assuntos
Doenças Autoimunes , COVID-19 , Animais , Linfócitos T CD8-Positivos , Humanos , Camundongos , Receptores KIR , Linfócitos T Reguladores
4.
Nature ; 603(7900): 321-327, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35073561

RESUMO

Multiple sclerosis (MS) is a heterogenous autoimmune disease in which autoreactive lymphocytes attack the myelin sheath of the central nervous system. B lymphocytes in the cerebrospinal fluid (CSF) of patients with MS contribute to inflammation and secrete oligoclonal immunoglobulins1,2. Epstein-Barr virus (EBV) infection has been epidemiologically linked to MS, but its pathological role remains unclear3. Here we demonstrate high-affinity molecular mimicry between the EBV transcription factor EBV nuclear antigen 1 (EBNA1) and the central nervous system protein glial cell adhesion molecule (GlialCAM) and provide structural and in vivo functional evidence for its relevance. A cross-reactive CSF-derived antibody was initially identified by single-cell sequencing of the paired-chain B cell repertoire of MS blood and CSF, followed by protein microarray-based testing of recombinantly expressed CSF-derived antibodies against MS-associated viruses. Sequence analysis, affinity measurements and the crystal structure of the EBNA1-peptide epitope in complex with the autoreactive Fab fragment enabled tracking of the development of the naive EBNA1-restricted antibody to a mature EBNA1-GlialCAM cross-reactive antibody. Molecular mimicry is facilitated by a post-translational modification of GlialCAM. EBNA1 immunization exacerbates disease in a mouse model of MS, and anti-EBNA1 and anti-GlialCAM antibodies are prevalent in patients with MS. Our results provide a mechanistic link for the association between MS and EBV and could guide the development of new MS therapies.


Assuntos
Infecções por Vírus Epstein-Barr , Esclerose Múltipla , Animais , Linfócitos B , Moléculas de Adesão Celular Neurônio-Glia , Antígenos Nucleares do Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Camundongos , Proteínas do Tecido Nervoso
5.
bioRxiv ; 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-34981055

RESUMO

Previous reports show that Ly49 + CD8 + T cells can suppress autoimmunity in mouse models of autoimmune diseases. Here we find a markedly increased frequency of CD8 + T cells expressing inhibitory Killer cell Immunoglobulin like Receptors (KIR), the human equivalent of the Ly49 family, in the blood and inflamed tissues of various autoimmune diseases. Moreover, KIR + CD8 + T cells can efficiently eliminate pathogenic gliadin-specific CD4 + T cells from Celiac disease (CeD) patients' leukocytes in vitro . Furthermore, we observe elevated levels of KIR + CD8 + T cells, but not CD4 + regulatory T cells, in COVID-19 and influenza-infected patients, and this correlates with disease severity and vasculitis in COVID-19. Expanded KIR + CD8 + T cells from these different diseases display shared phenotypes and similar T cell receptor sequences. These results characterize a regulatory CD8 + T cell subset in humans, broadly active in both autoimmune and infectious diseases, which we hypothesize functions to control self-reactive or otherwise pathogenic T cells. ONE-SENTENCE SUMMARY: Here we identified KIR + CD8 + T cells as a regulatory CD8 + T cell subset in humans that suppresses self-reactive or otherwise pathogenic CD4 + T cells.

6.
J Neuroinflammation ; 17(1): 189, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32539719

RESUMO

OBJECTIVE: To characterize long-term repopulation of peripheral immune cells following alemtuzumab-induced lymphopenia in relapsing-remitting MS (RRMS), with a focus on regulatory cell types, and to explore associations with clinical outcome measures. METHODS: The project was designed as a multicenter add-on longitudinal mechanistic study for RRMS patients enrolled in CARE-MS II, CARE-MS II extension at the University of Southern California and Stanford University, and an investigator-initiated study conducted at the Universities of British Columbia and Chicago. Methods involved collection of blood at baseline, prior to alemtuzumab administration, and at months 5, 11, 17, 23, 36, and 48 post-treatment. T cell, B cell, and natural killer (NK) cell subsets, chemokine receptor expression in T cells, in vitro cytokine secretion patterns, and regulatory T cell (Treg) function were assessed. Clinical outcomes, including expanded disability status score (EDSS), relapses, conventional magnetic resonance imaging (MRI) measures, and incidents of secondary autoimmunity were tracked. RESULTS: Variable shifts in lymphocyte populations occurred over time in favor of CD4+ T cells, B cells, and NK cells with surface phenotypes characteristic of regulatory subsets, accompanied by reduced ratios of effector to regulatory cell types. Evidence of increased Treg competence was observed after each treatment course. CD4+ and CD8+ T cells that express CXCR3 and CCR5 and CD8+ T cells that express CDR3 and CCR4 were also enriched after treatment, indicating heightened trafficking potential in activated T cells. Patterns of repopulation were not associated with measures of clinical efficacy or secondary autoimmunity, but exploratory analyses using a random generalized estimating equation (GEE) Poisson model provide preliminary evidence of associations between pro-inflammatory cell types and increased risk for gadolinium (Gd+) enhancing lesions, while regulatory subsets were associated with reduced risk. In addition, the risk for T2 lesions correlated with increases in CD3+CD8+CXCR3+ cells. CONCLUSIONS: Lymphocyte repopulation after alemtuzumab treatment favors regulatory subsets in the T cell, B cell, and NK cell compartments. Clinical efficacy may reflect the sum of interactions among them, leading to control of potentially pathogenic effector cell types. Several immune measures were identified as possible biomarkers of lesion activity. Future studies are necessary to more precisely define regulatory and effector subsets and their contributions to clinical efficacy and risk for secondary autoimmunity in alemtuzumab-treated patients, and to reveal new insights into mechanisms of immunopathogenesis in MS. TRIAL REGISTRATION: Parent trials for this study are registered with ClinicalTrials.gov: CARE-MS II: NCT00548405, CARE-MS II extension: NCT00930553 and ISS: NCT01307332.


Assuntos
Alemtuzumab/uso terapêutico , Fatores Imunológicos/uso terapêutico , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Esclerose Múltipla Recidivante-Remitente/imunologia , Adulto , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Feminino , Humanos , Imunofenotipagem , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Masculino , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA