Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Intell Neurosci ; 2022: 2763865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310595

RESUMO

Biorobotic fishes have a huge impact on the development of underwater devices due to both fast swimming speed and great maneuverability. In this paper, an enhanced CPG model is investigated for locomotion control of an elongated undulating fin robot inspired by black knife fish. The proposed CPG network includes sixteen coupled Hopf oscillators for gait generation to mimic fishlike swimming. Furthermore, an enhanced particle swarm optimization (PSO), called differential particle swarm optimization (D-PSO), is introduced to find a set of optimal parameters of the modified CPG network. The proposed D-PSO-based CPG network is not only able to increase the thrust force in order to make the faster swimming speed but also avoid the local maxima for the enhanced propulsive performance of the undulating fin robot. Additionally, a comparison of D-PSO with the traditional PSO and genetic algorithm (GA) has been performed in tuning the parametric values of the CPG model to prove the superiority of the introduced method. The D-PSO-based optimization technique has been tested on the actual undulating fin robot with sixteen fin-rays. The obtained results show that the average propulsive force of the untested material is risen 5.92%, as compared to the straight CPG model.


Assuntos
Robótica , Animais , Peixes , Locomoção , Natação
2.
Math Biosci Eng ; 19(1): 738-758, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34903010

RESUMO

This article proposes a locomotion controller inspired by black Knifefish for undulating elongated fin robot. The proposed controller is built by a modified CPG network using sixteen coupled Hopf oscillators with the feedback of the angle of each fin-ray. The convergence rate of the modified CPG network is optimized by a reinforcement learning algorithm. By employing the proposed controller, the undulating elongated fin robot can realize swimming pattern transformations naturally. Additionally, the proposed controller enables the configuration of the swimming pattern parameters known as the amplitude envelope, the oscillatory frequency to perform various swimming patterns. The implementation processing of the reinforcement learning-based optimization is discussed. The simulation and experimental results show the capability and effectiveness of the proposed controller through the performance of several swimming patterns in the varying oscillatory frequency and the amplitude envelope of each fin-ray.


Assuntos
Nadadeiras de Animais , Robótica , Animais , Fenômenos Biomecânicos , Locomoção , Natação
3.
Math Biosci Eng ; 17(4): 2760-2780, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32987494

RESUMO

Monitor and classify behavioral activities in cows is a helpful support solution for livestock based on the analysis of data from sensors attached to the animal. Accelerometers are particularly suited for monitoring cow behaviors due to small size, lightweight and high accuracy. Nevertheless, the interpretation of the data collected by such sensors when characterizing the type of behaviors still brings major challenges to developers, related to activity complexity (i.e., certain behaviors contain similar gestures). This paper presents a new design of cows' behavior classifier based on acceleration data and proposed feature set. Analysis of cow acceleration data is used to extract features for classification using machine learning algorithms. We found that with 5 features (mean, standard deviation, root mean square, median, range) and 16-second window of data (1 sample/second), classification of seven cow behaviors (including feeding, lying, standing, lying down, standing up, normal walking, active walking) achieved the overall highest performance. We validated the results with acceleration data from a public source. Performance of our proposed classifier was evaluated and compared to existing ones in terms of the sensitivity, the accuracy, the positive predictive value, and the negative predictive value.


Assuntos
Aceleração , Caminhada , Algoritmos , Animais , Comportamento Animal , Bovinos , Feminino , Gado
4.
Math Biosci Eng ; 17(4): 4048-4063, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32987567

RESUMO

Compressive sampling (CS) has been commonly employed in the field of magnetic resonance imaging (MRI) to accurately reconstruct sparse and compressive signals. In a MR image, a large amount of encoded information focuses on the origin of the k-space. For the 2D Cartesian K-space MRI, under-sampling the frequency-encoding (kx) dimension does not affect to the acquisition time, thus, only the phase-encoding (ky) dimension can be exploited. In the traditional random under-sampling approach, it acquired Gaussian random measurements along the phaseencoding (ky) in the k-space. In this paper, we proposed a hybrid under-sampling approach; the number of measurements in (ky) is divided into two portions: 70% of the measurements are for random under-sampling and 30% are for definite under-sampling near the origin of the k-space. The numerical simulation consequences pointed out that, in the lower region of the under-sampling ratio r, both the average error and the universal image quality index of the appointed scheme are drastically improved up to 55 and 77% respectively as compared to the traditional scheme. For the first time, instead of using highly computational complexity of many advanced reconstruction techniques, a simple and efficient CS method based simulation is proposed for MRI reconstruction improvement. These findings are very useful for designing new MRI data acquisition approaches for reducing the imaging time of current MRI systems.


Assuntos
Compressão de Dados , Imageamento por Ressonância Magnética , Algoritmos , Simulação por Computador , Processamento de Imagem Assistida por Computador , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA