Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 620786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719291

RESUMO

Botrytis cinerea, a fungal pathogen that causes gray mold on grapes, can decrease yield, substantially reduce wine quality, and therefore cause significant economic losses. In a context of increasing awareness of environmental and human health, biopesticides are a potential alternative to synthetic chemical treatments to produce grapes and wine in compliance with high food standards. However, the effectiveness of biopesticides is not well known and more research is needed to help winegrowers assess their ability to control wine diseases. Our study aims to assess the efficacy of two commercial biopesticides, based on potassium bicarbonate and Aureobasidium pullulans, in reducing the incidence of gray mold (i.e., the proportion of grape bunches that are diseased). We use data from an on-farm trial network managed over 3 years (from 2014 to 2016) in a major wine producing region located in Southwestern France, and fit Bayesian generalized linear multilevel models able to take the variability of treatment effect across trials into account. The fitted models were then used to estimate the efficacy on incidence as a function of the severity (i.e., the proportion of diseased grape berries in a bunch) in an untreated plot in order to determine if the effectiveness of the treatments depends on the disease pressure. At average disease severity (i.e., 3%), the efficacy on disease incidence at the network level was equal to 20% [95% CI = (-0.1; 37.3)] and 13% [95% CI = (0.2; 24.7)] for potassium bicarbonate and A. pullulans, respectively. For both biopesticides, the efficacy on incidence for a new site-year is highly uncertain, but potassium bicarbonate had a lower uncertainty and a lower application cost compared to A. pullulans. Our results confirm that potassium bicarbonate is an interesting biopesticide under farming conditions in organic vineyards in southwestern France, but the amount of uncertainty points to the need for further research.

2.
Front Plant Sci ; 10: 105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804972

RESUMO

Botrytis bunch rot (BBR), caused by the necrotrophic fungus Botrytis cinerea, is a major disease of wine and table grapes worldwide. Due to negative effects of pesticides on the environment and human health, alternative control strategies against BBR, such as biological control agents (BCAs), are required to produce high-quality grapes and wines with high standards of food safety. However, few biological control products against BBR are available, and their efficacy is sometimes variable. This study aimed to evaluate and compare (1) the efficacy of new bacterial BCA strains developed at INRA Bordeaux and (2) the BBR reductions achieved by commercial biocontrol products that are already registered or close to being registered. During three consecutive seasons, 10 field experiments were established in six different experimental vineyards in southwestern France. Spray applications were performed at key phenological stages (five or six during the season), or at high BBR-risk periods late in the season according to a Disease Risk Index model. At harvest, BBR incidence and severity (% of symptomatic berries per bunch) were visually determined. The experiments included four bacterial strains at an early experimental stage, particularly Bacillus ginsengihumi (S38). Nine commercial BCA products were also tested, including Bacillus subtilis, Bacillus amyloliquefaciens, Aureobasidium pullulans, Ulocladium oudemansii, and Candida sake. Among the four experimental bacterial strains, only B. ginsengihumi S38 significantly controlled the BBR, presenting reductions in the average severity ranging from 35 to 60%, compared to untreated control, throughout the three seasons. Several commercial BCAs achieved significant reductions in BBR severity ranging from 21 to 58%, although not in every trial. The treatments that achieved higher reductions in severity rates were based on C. sake (45%), B. subtilis (54%), and B. amyloliquefaciens (58%). The efficacy of those BCAs was consistent throughout the studied seasons. The results confirmed the suitability of several biological control products under the conditions in vineyards in southwestern France, while also highlighting the good performance of the novel experimental BCA B. ginsengihumi S38 strain, which achieved similar control rates to the products registered for commercial use. The major factors involved in the variability in the results are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA