Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Mol Diagn ; 26(6): 510-519, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582400

RESUMO

The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.


Assuntos
Variações do Número de Cópias de DNA , Sequenciamento do Exoma , Testes Genéticos , Humanos , Sequenciamento do Exoma/métodos , Índia/epidemiologia , Masculino , Testes Genéticos/métodos , Testes Genéticos/economia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Exoma/genética , Consanguinidade , Criança , Adulto , Adolescente , Pré-Escolar , Fenótipo , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/epidemiologia , Lactente , Adulto Jovem
2.
Diseases ; 11(2)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37218880

RESUMO

Mucopolysaccharidosis type I (MPS I) is a rare inherited autosomal recessive lysosomal storage disorder. Despite several reports on MPS I-related neonatal interstitial lung disease, it is still considered to be an under-recognized disease manifestation. Thus, further study of MPS I is required to improve specific therapies and management strategies. The current report describes a late preterm baby (36 weeks gestational age) with neonatal onset of interstitial lung disease eventually diagnosed as MPS I. The neonate required prolonged respiratory support and oxygen supplementation that further escalated the likely diagnosis of inherited disorders of pulmonary surfactant dysfunction. Whole-exome sequencing confirmed the diagnosis of MPS I, following the observation of low levels of the enzyme α-L-iduronidase. The results highlight the necessity of considering MPS I-related pulmonary involvement in newborns with persistent respiratory insufficiency.

3.
Transl Vis Sci Technol ; 8(6): 43, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31871829

RESUMO

PURPOSE: Progression of diabetic retinopathy is related to the duration and severity of hyperglycemia, and after 25 years of diabetes, 90% of patients show some signs of retinopathy. Despite initiation of many retinal molecular/biochemical abnormalities, including mitochondrial damage and epigenetic modifications, the disease remains asympotomatic in the initial stages. Our goal is to examine the utility of DNA methylation as a possible biomarker of diabetic retinopathy. METHODS: Genomic DNA (gDNA) was isolated from the buffy coat, isolated from blood of diabetic patients with proliferative (PDR) or no retinopathy (No-DR), and nondiabetic subjects (CONT). Methylation of mitochondrial DNA (mtDNA), especially its D-Loop (the site of mtDNA transcription/replication), was quantified by methylated DNA immunoprecipitation and methyl-specific PCR techniques. Results were confirmed in purified mtDNA. The specific D-Loop region with the highest DNA methylation was identified using five overlapping primers, and DNMT1 binding was quantified by chromatin immunoprecipitation. Promoter DNA methylation of DNA mismatch repair (MLH1) and superoxide scavenging (SOD2) enzymes were also quantified. RESULTS: Compared to CONT, D-Loop methylation was higher in PDR and No-DR groups, and the D-Loop region responsible for encoding the majority of the mtDNA-encoded genes had significantly higher methylation in the PDR group versus No-DR. Similarly, compared to No-DR, the PDR group also had hypermethylated MHL1 and SOD2 promoters. CONCLUSIONS: Blood from PDR patients have higher DNA methylation, than seen in diabetic patients without retinopathy. Thus, DNA methylation can be used as a possible biomarker of diabetic retinopathy. TRANSLATIONAL RELEVANCE: DNA methylation status in the blood of diabetic patients could serve as a potential noninvasive biomarker of retinopathy, and also an important readout parameter for testing longitudinal outcome of novel therapeutics for this blinding disease.

4.
Mol Neurobiol ; 56(12): 8643-8655, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31300985

RESUMO

PURPOSE: Early activation of cytosolic NADPH oxidase-2 (Nox2) in diabetes increases retinal ROS production, damaging their mitochondria. The assembly of Nox2 holoenzyme requires activation of a small molecular weight G protein Rac1. Rac1 activation is regulated by guanine exchange factors and guanine nucleotide-dissociation inhibitors, and post-translational modifications assist in its association with exchange factors and dissociation inhibitors. The goal of this study is to investigate the mechanisms of Rac1 activation in the development of diabetic retinopathy. METHODS: The levels of the dissociation inhibitor, prenylating enzyme (farnesyltransferase, FNTA), and exchange factor Vav2 were quantified in human retinal endothelial cells, incubated in normal or high glucose for 96 h. The roles of prenylation and Vav2 in Rac1-Nox2-ROS mitochondrial damage were confirmed in FNTA-siRNA-transfected cells and using the Vav2 inhibitor EHop, respectively. Retinal histopathology and functional changes associated with diabetic retinopathy were analyzed in diabetic mice receiving EHop for 6 months. Key parameters of Rac1 activation were confirmed in the retinal microvasculature from human donors with diabetic retinopathy. RESULTS: In HRECs, glucose increased FNTA and Vav2 and decreased the dissociation inhibitor. FNTA-siRNA and EHop inhibited glucose-induced activation of Rac1-Nox2-ROS signaling. In diabetic mice, EHop ameliorated the development of retinopathy and functional/structural abnormalities and attenuated Rac1-Nox2-mitochondrial damage. Similar alterations in Rac1 regulators were observed in retinal microvasculature from human donors with diabetic retinopathy. In diabetes, Rac1 prenylation and its interactions with Vav2 contribute to Nox2-ROS-mitochondrial damage, and the pharmacological inhibitors to attenuate Rac1 interactions with its regulators could have the potential to halt/inhibit the development of diabetic retinopathy. Graphical Abstract Activation of prenylating enzyme farnesyltransferase (FNTA) in diabetes, prenylates Rac1. The binding of Rac1 with guanine nucleotide-dissociation inhibitor (GDI) is decreased, but its association with the guanine exchange factor, Vav2, is increased, resulting in Rac1 activation. Active Rac1 helps in the assembly of Nox2 holoenzyme, and Nox2 activation increases cytosolic ROS production, damaging the mitochondria. Damaged mitochondria accelerate capillary cell apoptosis, and ultimately, results in the development of diabetic retinopathy.


Assuntos
Retinopatia Diabética/metabolismo , Estresse Oxidativo , Proteínas rac1 de Ligação ao GTP/metabolismo , Idoso , Animais , Retinopatia Diabética/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glucose/toxicidade , Humanos , Camundongos Endogâmicos C57BL , Microvasos/efeitos dos fármacos , Microvasos/patologia , Pessoa de Meia-Idade , NADPH Oxidase 2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Prenilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-vav/metabolismo , Doadores de Tecidos
5.
Biochim Biophys Acta Mol Basis Dis ; 1865(6): 1617-1626, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30922813

RESUMO

Mitochondria are dynamic in structure, and undergo continuous fusion-fission to maintain their homeostasis. In diabetes, retinal mitochondria are swollen, their membrane is damaged and mitochondrial fusion protein, mitofusin 2 (Mfn2), is decreased. DNA methylation machinery is also activated and methylation status of genes implicated in mitochondrial damage and biogenesis is altered. This study aims to investigate the role of mitochondrial fusion in the development of diabetic retinopathy, and to illustrate the molecular mechanism responsible for Mfn2 suppression. Using human retinal endothelial cells, manipulated for Mfn2, we investigated the role of fusion in mitochondrial structural and functional damage in diabetes. The molecular mechanism of its suppression in diabetic milieu was determined by investigating Mfn2 promoter DNA methylation, and confirmed using molecular and pharmacological inhibitors of DNA methylation. Similar studies were performed in the retinal microvasculature (prepared by hypotonic shock method) of diabetic rats, and human donors with documented diabetic retinopathy. Overexpression of Mfn2 prevented glucose-induced increase in mitochondrial fragmentation, decrease in complex III activity and increase in membrane permeability, mtDNA damage and apoptosis. High glucose hypermethylated Mfn2 promoter and decreased transcription factor (SP1) binding, and Dnmt inhibition protected Mfn2 promoter from these changes. In streptozotocin-induced diabetic rats, intravitreal administration of Dnmt1-siRNA attenuated Mfn2 promoter hypermethylation and restored its expression. Human donors with diabetic retinopathy confirmed Mfn2 promoter DNA hypermethylation. Thus, regulating Mfn2 and its epigenetic modifications by molecular/pharmacological means will protect mitochondrial homeostasis in diabetes, and could attenuate the development of retinopathy in diabetic patients.


Assuntos
Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/genética , Retinopatia Diabética/genética , Epigênese Genética , GTP Fosfo-Hidrolases/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Adulto , Idoso , Animais , Linhagem Celular , DNA (Citosina-5-)-Metiltransferase 1/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , GTP Fosfo-Hidrolases/metabolismo , Homeostase/genética , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Regiões Promotoras Genéticas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Wistar , Retina/metabolismo , Retina/patologia , Transdução de Sinais , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Estreptozocina/administração & dosagem
6.
Antioxid Redox Signal ; 30(13): 1621-1634, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30105917

RESUMO

AIMS: Diabetes increases oxidative stress in the retina and dysfunctions their mitochondria, accelerating capillary cell apoptosis. A 66 kDa adaptor protein, p66Shc, is considered as a sensor of oxidative stress-induced apoptosis. In the pathogenesis of diabetic retinopathy, a progressive disease, reactive oxygen species (ROS) production by activation of a small molecular weight G-protein (Ras-related C3 botulinum toxin substrate 1 [Rac1])-Nox2 signaling precedes mitochondrial damage. Rac1 activation is facilitated by guanine exchange factors (GEFs), and p66Shc increases Rac1-specific GEF activity of Son of Sevenless 1 (Sos1). p66Shc also possesses oxidoreductase activity and can directly stimulate mitochondrial ROS generation. Our aim was to investigate the role of p66Shc in the development of diabetic retinopathy and mechanism of its transcription. RESULTS: High glucose increased p66Shc expression in human retinal endothelial cells, and elevated acetylated histone 3 lysine 9 (H3K9) levels and transcriptional factor p53 binding at its promoter. Glucose also augmented interactions between Rac1 and Sos1 and activated Rac1-Nox2. Phosphorylation of p66Shc was increased, allowing it to interact with peptidyl prolyl isomerase to facilitate its localization inside the mitochondria, culminating in mitochondrial damage. P66shc-small interfering RNA (siRNA) inhibited glucose-induced Rac1 activation and mitochondrial damage. Similar results are observed in retinal microvessels from diabetic rats. INNOVATION: This is the first report identifying the role of p66Shc in the development of diabetic retinopathy and implicating increased histone acetylation in its transcriptional regulation. CONCLUSION: Thus, p66Shc has dual role in the development of diabetic retinopathy; its regulation in the early stages of the disease should impede Rac1-ROS production and, in the later stages, prevent mitochondrial damage and initiation of a futile cycle of free radicals.


Assuntos
Citosol/metabolismo , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Mitocôndrias/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Retinopatia Diabética/patologia , Suscetibilidade a Doenças , Glucose/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Transcrição Gênica , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Invest Ophthalmol Vis Sci ; 59(12): 4831-4840, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347077

RESUMO

Purpose: Oxidative stress plays a central role in the development of diabetic retinopathy, and in the pathogenesis of this blinding disease, activation of NADPH oxidase 2 (Nox2)-mediated cytosolic reactive oxygen species (ROS) production precedes mitochondrial damage. The multicomponent cytosolic Nox2 has an obligatory component, Ras-related C3 botulinum toxin substrate 1 (Rac1); in diabetes, Rac1 is functionally and transcriptionally active. Diabetes also facilitates many epigenetic modifications, and activates both DNA methylating (Dnmts) and hydroxymethylating (Tets) enzymes. Our aim was to investigate the role of epigenetics in Rac1 regulation in diabetes. Methods: Using human retinal endothelial cells, exposed to high glucose, 5-methyl cytosine (5mC) and 5-hydroxy methyl cytosine (5hmC) levels, and binding of Dnmt and Tets were quantified at the Rac1 promoter. The effect of inhibition of Dnmts/Tets (pharmacological inhibitors or short interfering RNA [siRNA]) on glucose-induced activation of Rac1-ROS production was evaluated. Results were confirmed in retinal microvessels from streptozotocin-induced diabetic mice receiving intravitreally Dnmt1-siRNA. Results: Despite high glucose-induced increased binding of Dnmt1, 5mC levels remained subnormal at Rac1 promoter. But, at the same site, 5hmC levels and transcription factor nuclear factor (NF)-kB binding were increased. Inhibition of Dnmts/Tets prevented increase in 5hmC and NF-kB binding, and attenuated Rac1 activation. Similarly, in mouse retinal microvessels, Dnmt1-siRNA ameliorated diabetes-induced increase in Rac1 transcripts and activity, and decreased ROS levels. Conclusions: Thus, despite Dnmts activation, concomitant increase in Tets rapidly hydroxymethylates 5mC, allowing NF-κB to bind and activate Rac1. These results imply a critical role of an active DNA methylation in cytosolic ROS regulation in the development of diabetic retinopathy.


Assuntos
Diabetes Mellitus Experimental/genética , Retinopatia Diabética/genética , Regulação da Expressão Gênica/fisiologia , Estresse Oxidativo/genética , Proteínas rac1 de Ligação ao GTP/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animais , Células Cultivadas , Metilação de DNA , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epigenômica , Feminino , Glucose/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Vasos Retinianos/citologia , Transdução de Sinais , Transfecção
8.
Diabetes ; 67(4): 745-754, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29311218

RESUMO

Diabetic retinopathy is a multifactorial disease, and the exact mechanism of its pathogenesis remains obscure. Sirtuin 1 (Sirt1), a multifunctional deacetylase, is implicated in the regulation of many cellular functions and in gene transcription, and retinal Sirt1 is inhibited in diabetes. Our aim was to determine the role of Sirt1 in the development of diabetic retinopathy and to elucidate the molecular mechanism of its downregulation. Using Sirt1-overexpressing mice that were diabetic for 8 months, structural, functional, and metabolic abnormalities were investigated in vascular and neuronal retina. The role of epigenetics in Sirt1 transcriptional suppression was investigated in retinal microvessels. Compared with diabetic wild-type mice, retinal vasculature from diabetic Sirt1 mice did not present any increase in the number of apoptotic cells or degenerative capillaries or decrease in vascular density. Diabetic Sirt1 mice were also protected from mitochondrial damage and had normal electroretinography responses and ganglion cell layer thickness. Diabetic wild-type mice had hypermethylated Sirt1 promoter DNA, which was alleviated in diabetic Sirt1 mice, suggesting a role for epigenetics in its transcriptional suppression. Thus strategies targeted to ameliorate Sirt1 inhibition have the potential to maintain retinal vascular and neuronal homeostasis, providing opportunities to retard the development of diabetic retinopathy in its early stages.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/genética , Epigênese Genética/genética , RNA Mensageiro/metabolismo , Vasos Retinianos/metabolismo , Sirtuína 1/genética , Animais , Apoptose/genética , Barreira Hematorretiniana/metabolismo , Permeabilidade Capilar , Metilação de DNA , Diabetes Mellitus Experimental/complicações , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Eletrorretinografia , Camundongos , Microvasos/metabolismo , Microvasos/patologia , Tamanho do Órgão , Regiões Promotoras Genéticas , Retina/patologia , Vasos Retinianos/patologia , Sirtuína 1/metabolismo , Transcriptoma
9.
Invest Ophthalmol Vis Sci ; 58(14): 6440-6448, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29261844

RESUMO

Purpose: Diabetes activates matrix metalloproteinase-9 (MMP-9), and MMP-9 via damaging retinal mitochondria, activates capillary cell apoptosis. MMP-9 promoter has binding sites for many transcription factors, and in diabetes its promoter undergoes epigenetic modifications, including histone modifications and DNA methylation. Enhancer of Zeste homolog 2 (Ezh2), which catalyzes dimethylation/trimethylation of histone 3 lysine 27 (H3K27me2 and me3), is also associated with DNA methylation. Our aim was to investigate link(s) between histone and DNA modifications in the regulation of MMP-9. Methods: Using human retinal endothelial cells, and also retinal microvessels from diabetic rats, effect of hyperglycemia on H3K27me3, and recruitment of Ezh2 at the MMP-9 promoter were quantified by chromatin-immunoprecipitation technique. Role of H3K27 trimethylation in regulating DNA methylation-transcription of MMP-9 was determined by regulating Ezh2 by its specific siRNA and also a pharmacologic inhibitor. Results: Hyperglycemia elevated H3K27me3 levels and the recruitment of Ezh2 at the MMP-9 promoter, and increased the enzyme activity of Ezh2. Inhibition of Ezh2 attenuated recruitment of both DNA methylating (Dnmt1) and hydroxymethylating (Tet2) enzymes and 5 hydroxymethyl cytosine at the same region of the MMP-9 promoter, and prevented increase in MMP-9 transcription and mitochondrial damage. Conclusions: Activation of Ezh2 in diabetes, via trimethylation of H3K27, facilitates recruitment of the enzymes responsible for regulation of DNA methylation of the MMP-9 promoter, resulting in its transcriptional activation. Thus, a close crosstalk between H3K27 trimethylation and DNA methylation in diabetes plays a critical role in the maintenance of cellular epigenetic integrity of MMP-9.


Assuntos
Diabetes Mellitus Experimental , Retinopatia Diabética/genética , Regulação da Expressão Gênica , Histonas/metabolismo , Metaloproteinase 9 da Matriz/genética , Retina/metabolismo , Adulto , Idoso , Animais , Apoptose , Células Cultivadas , Metilação de DNA , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Retina/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA