Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Comput Biol Med ; 159: 106856, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075600

RESUMO

BACKGROUND: Among all the cancers known today, prostate cancer is one of the most commonly diagnosed in men. With modern advances in medicine, its mortality has been considerably reduced. However, it is still a leading type of cancer in terms of deaths. The diagnosis of prostate cancer is mainly conducted by biopsy test. From this test, Whole Slide Images are obtained, from which pathologists diagnose the cancer according to the Gleason scale. Within this scale from 1 to 5, grade 3 and above is considered malignant tissue. Several studies have shown an inter-observer discrepancy between pathologists in assigning the value of the Gleason scale. Due to the recent advances in artificial intelligence, its application to the computational pathology field with the aim of supporting and providing a second opinion to the professional is of great interest. METHOD: In this work, the inter-observer variability of a local dataset of 80 whole-slide images annotated by a team of 5 pathologists from the same group was analyzed at both area and label level. Four approaches were followed to train six different Convolutional Neural Network architectures, which were evaluated on the same dataset on which the inter-observer variability was analyzed. RESULTS: An inter-observer variability of 0.6946 κ was obtained, with 46% discrepancy in terms of area size of the annotations performed by the pathologists. The best trained models achieved 0.826±0.014κ on the test set when trained with data from the same source. CONCLUSIONS: The obtained results show that deep learning-based automatic diagnosis systems could help reduce the widely-known inter-observer variability that is present among pathologists and support them in their decision, serving as a second opinion or as a triage tool for medical centers.


Assuntos
Aprendizado Profundo , Neoplasias da Próstata , Masculino , Humanos , Inteligência Artificial , Gradação de Tumores , Variações Dependentes do Observador , Reprodutibilidade dos Testes
2.
Comput Biol Med ; 136: 104743, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34426172

RESUMO

Prostate cancer (PCa) is one of the most commonly diagnosed cancer and one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020. Artificial Intelligence algorithms have had a huge impact on medical image analysis, including digital histopathology, where Convolutional Neural Networks (CNNs) are used to provide a fast and accurate diagnosis, supporting experts in this task. To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images. Due to the size of these images, neural networks cannot use them as input and, therefore, small subimages called patches are extracted and predicted, obtaining a patch-level classification. In this work, a novel patch aggregation method based on a custom Wide & Deep neural network model is presented, which performs a slide-level classification using the patch-level classes obtained from a CNN. The malignant tissue ratio, a 10-bin malignant probability histogram, the least squares regression line of the histogram, and the number of malignant connected components are used by the proposed model to perform the classification. An accuracy of 94.24% and a sensitivity of 98.87% were achieved, proving that the proposed system could aid pathologists by speeding up the screening process and, thus, contribute to the fight against PCa.


Assuntos
Inteligência Artificial , Neoplasias da Próstata , Algoritmos , Humanos , Masculino , Redes Neurais de Computação , Neoplasias da Próstata/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA