Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 73(7): 2373-7, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17293507

RESUMO

Closely related Escherichia coli B2 strains O1:K1, O2:K1, O18:K1, and O45:K1 constitute a major subgroup causing extraintestinal infections. A DNA pathoarray analysis was used to develop a PCR specific for this subgroup that was included in the multiplex phylogenetic-grouping PCR method. Our PCR may serve to identify this virulent subgroup among different ecological niches.


Assuntos
Escherichia coli/classificação , Reação em Cadeia da Polimerase/métodos , Sequência de Bases , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Ribotipagem , Virulência
2.
J Mol Biol ; 363(2): 383-94, 2006 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-16963083

RESUMO

Lipopolysaccharides constitute the outer leaflet of the outer membrane of Gram-negative bacteria and are therefore essential for cell growth and viability. The heptosyltransferase WaaC is a glycosyltransferase (GT) involved in the synthesis of the inner core region of LPS. It catalyzes the addition of the first L-glycero-D-manno-heptose (heptose) molecule to one 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue of the Kdo2-lipid A molecule. Heptose is an essential component of the LPS core domain; its absence results in a truncated lipopolysaccharide associated with the deep-rough phenotype causing a greater susceptibility to antibiotic and an attenuated virulence for pathogenic Gram-negative bacteria. Thus, WaaC represents a promising target in antibacterial drug design. Here, we report the structure of WaaC from the Escherichia coli pathogenic strain RS218 alone at 1.9 A resolution, and in complex with either ADP or the non-cleavable analog ADP-2-deoxy-2-fluoro-heptose of the sugar donor at 2.4 A resolution. WaaC adopts the GT-B fold in two domains, characteristic of one glycosyltransferase structural superfamily. The comparison of the three different structures shows that WaaC does not undergo a domain rotation, characteristic of the GT-B family, upon substrate binding, but allows the substrate analog and the reaction product to adopt remarkably distinct conformations inside the active site. In addition, both binary complexes offer a close view of the donor subsite and, together with results from site-directed mutagenesis studies, provide evidence for a model of the catalytic mechanism.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Glicosiltransferases/química , Heptoses/química , Estrutura Terciária de Proteína , Difosfato de Adenosina/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compostos de Flúor/química , Compostos de Flúor/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Heptoses/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Dobramento de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA