Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(10): e1011002, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37856537

RESUMO

Pathogenic fungi are a cause of growing concern. Developing an efficient and safe antifungal is challenging because of the similar biological properties of fungal and host cells. Consequently, there is an urgent need to better understand the mechanisms underlying antifungal resistance to prolong the efficacy of current molecules. A major step in this direction would be to be able to predict or even prevent the acquisition of resistance. We leverage the power of experimental evolution to quantify the diversity of paths to resistance to the antifungal 5-fluorocytosine (5-FC), commercially known as flucytosine. We generated hundreds of independent 5-FC resistant mutants derived from two genetic backgrounds from wild isolates of Saccharomyces cerevisiae. Through automated pin-spotting, whole-genome and amplicon sequencing, we identified the most likely causes of resistance for most strains. Approximately a third of all resistant mutants evolved resistance through a pleiotropic drug response, a potentially novel mechanism in response to 5-FC, marked by cross-resistance to fluconazole. These cross-resistant mutants are characterized by a loss of respiration and a strong tradeoff in drug-free media. For the majority of the remaining two thirds, resistance was acquired through loss-of-function mutations in FUR1, which encodes an important enzyme in the metabolism of 5-FC. We describe conditions in which mutations affecting this particular step of the metabolic pathway are favored over known resistance mutations affecting a step upstream, such as the well-known target cytosine deaminase encoded by FCY1. This observation suggests that ecological interactions may dictate the identity of resistance hotspots.


Assuntos
Antifúngicos , Flucitosina , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana , Flucitosina/farmacologia , Fluconazol , Fungos , Saccharomyces cerevisiae , Farmacorresistência Fúngica/genética
2.
mBio ; 13(1): e0320921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089067

RESUMO

The emergence of the plasmid-borne colistin resistance gene mcr-1 threatens public health. IncX4-type plasmids are one of the most epidemiologically successful vehicles for spreading mcr-1 worldwide. Since MCR-1 is known for imposing a fitness cost to its host bacterium, the successful spread of mcr-1-bearing plasmids might be linked to high conjugation frequency, which would enhance the maintenance of the plasmid in the host without antibiotic selection. However, the mechanism of IncX4 plasmid conjugation remains unclear. In this study, we used high-density transposon mutagenesis to identify factors required for IncX4 plasmid transfer. Eighteen essential transfer genes were identified, including five with annotations unrelated to conjugation. Cappable-seq, transcriptome sequencing (RNA-seq), electrophoretic mobility shift assay, and ß-galactosidase assay confirmed that a novel transcriptional regulator gene, pixR, directly regulates the transfer of IncX4 plasmids by binding the promoter of 13 essential transfer genes to increase their transcription. PixR is not active under nonmating conditions, while the expression of the pixR, pilX3-4, and pilX11 genes increased 3- to 6-fold upon contact with recipient Escherichia coli C600. Plasmid invasion and coculture competition assays revealed the essentiality of pixR for spreading and persistence of mcr-1-bearing IncX4 plasmids in bacterial populations. Effective conjugation is crucial for alleviating the fitness cost exerted by mcr-1 carriage. The existence of the IncX4-specific pixR gene increases plasmid transmissibility while promoting the invasion and persistence of mcr-1-bearing plasmids in bacterial populations, which helps explain their global prevalence. IMPORTANCE The spread of clinically relevant antibiotic resistance genes is often linked to the dissemination of epidemic plasmids. However, the underlying molecular mechanisms contributing to the successful spread of epidemic plasmids remain unclear. In this report, we shine a light on the transfer activation of IncX4 plasmids. We show how conjugation promotes the invasion and persistence of IncX4 plasmids within a bacterial population. The dissection of the regulatory network of conjugation helps explain the rapid spread of epidemic plasmids in nature. It also reveals potential targets for the development of conjugation inhibitors.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Colistina/farmacologia , Plasmídeos , Testes de Sensibilidade Microbiana
3.
PLoS Genet ; 17(8): e1009669, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34415925

RESUMO

Salmonella Genomic Island 1 (SGI1) and its variants are significant contributors to the spread of antibiotic resistance among Gammaproteobacteria. All known SGI1 variants integrate at the 3' end of trmE, a gene coding for a tRNA modification enzyme. SGI1 variants are mobilized specifically by conjugative plasmids of the incompatibility groups A and C (IncA and IncC). Using a comparative genomics approach based on genes conserved among members of the SGI1 group, we identified diverse integrative elements distantly related to SGI1 in several species of Vibrio, Aeromonas, Salmonella, Pokkaliibacter, and Escherichia. Unlike SGI1, these elements target two alternative chromosomal loci, the 5' end of dusA and the 3' end of yicC. Although they share many features with SGI1, they lack antibiotic resistance genes and carry alternative integration/excision modules. Functional characterization of IMEVchUSA3, a dusA-specific integrative element, revealed promoters that respond to AcaCD, the master activator of IncC plasmid transfer genes. Quantitative PCR and mating assays confirmed that IMEVchUSA3 excises from the chromosome and is mobilized by an IncC helper plasmid from Vibrio cholerae to Escherichia coli. IMEVchUSA3 encodes the AcaC homolog SgaC that associates with AcaD to form a hybrid activator complex AcaD/SgaC essential for its excision and mobilization. We identified the dusA-specific recombination directionality factor RdfN required for the integrase-mediated excision of dusA-specific elements from the chromosome. Like xis in SGI1, rdfN is under the control of an AcaCD-responsive promoter. Although the integration of IMEVchUSA3 disrupts dusA, it provides a new promoter sequence and restores the reading frame of dusA for proper expression of the tRNA-dihydrouridine synthase A. Phylogenetic analysis of the conserved proteins encoded by SGI1-like elements targeting dusA, yicC, and trmE gives a fresh perspective on the possible origin of SGI1 and its variants.


Assuntos
Ilhas Genômicas , Plasmídeos/genética , Salmonella/genética , Vibrio/genética , Sequência de Aminoácidos , Conjugação Genética , Sequência Conservada , DNA Bacteriano/genética , Farmacorresistência Bacteriana , Evolução Molecular , Genômica , Filogenia
4.
Nucleic Acids Res ; 49(14): 7807-7824, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-33834206

RESUMO

IncC conjugative plasmids and the multiple variants of Salmonella Genomic Island 1 (SGI1) are two functionally interacting families of mobile genetic elements commonly associated with multidrug resistance in the Gammaproteobacteria. SGI1 and its siblings are specifically mobilised in trans by IncC conjugative plasmids. Conjugative transfer of IncC plasmids is activated by the plasmid-encoded master activator AcaCD. SGI1 carries five AcaCD-responsive promoters that drive the expression of genes involved in its excision, replication, and mobilisation. SGI1 encodes an AcaCD homologue, the transcriptional activator complex SgaCD (also known as FlhDCSGI1) that seems to recognise and activate the same SGI1 promoters. Here, we investigated the relevance of SgaCD in SGI1's lifecycle. Mating assays revealed the requirement for SgaCD and its IncC-encoded counterpart AcaCD in the mobilisation of SGI1. An integrative approach combining ChIP-exo, Cappable-seq, and RNA-seq confirmed that SgaCD activates each of the 18 AcaCD-responsive promoters driving the expression of the plasmid transfer functions. A comprehensive analysis of the activity of the complete set of AcaCD-responsive promoters of SGI1 and the helper IncC plasmid was performed through reporter assays. qPCR and flow cytometry assays revealed that SgaCD is essential to elicit the excision and replication of SGI1 and destabilise the helper IncC plasmid.


Assuntos
Conjugação Genética/genética , Ilhas Genômicas/genética , Plasmídeos/genética , Salmonella/genética , Ativação Transcricional , Proteínas de Bactérias/genética , Replicação do DNA/genética , Farmacorresistência Bacteriana Múltipla/genética , Gammaproteobacteria/genética , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Modelos Genéticos , Regiões Promotoras Genéticas/genética , RNA-Seq/métodos
5.
Appl Environ Microbiol ; 84(13)2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29654185

RESUMO

Integrative and conjugative elements (ICEs) of the SXT/R391 family are key drivers of the spread of antibiotic resistance in Vibrio cholerae, the infectious agent of cholera, and other pathogenic bacteria. The SXT/R391 family of ICEs was defined based on the conservation of a core set of 52 genes and site-specific integration into the 5' end of the chromosomal gene prfC Hence, the integrase gene int has been intensively used as a marker to detect SXT/R391 ICEs in clinical isolates. ICEs sharing most core genes but differing by their integration site and integrase gene have been recently reported and excluded from the SXT/R391 family. Here we explored the prevalence and diversity of atypical ICEs in GenBank databases and their relationship with typical SXT/R391 ICEs. We found atypical ICEs in V. cholerae isolates that predate the emergence and expansion of typical SXT/R391 ICEs in the mid-1980s in seventh-pandemic toxigenic V. cholerae strains O1 and O139. Our analyses revealed that while atypical ICEs are not associated with antibiotic resistance genes, they often carry cation efflux pumps, suggesting heavy metal resistance. Atypical ICEs constitute a polyphyletic group likely because of occasional recombination events with typical ICEs. Furthermore, we show that the alternative integration and excision genes of atypical ICEs remain under the control of SetCD, the main activator of the conjugative functions of SXT/R391 ICEs. Together, these observations indicate that substitution of the integration/excision module and change of specificity of integration do not preclude atypical ICEs from inclusion into the SXT/R391 family.IMPORTANCEVibrio cholerae is the causative agent of cholera, an acute intestinal infection that remains to this day a world public health threat. Integrative and conjugative elements (ICEs) of the SXT/R391 family have played a major role in spreading antimicrobial resistance in seventh-pandemic V. cholerae but also in several species of Enterobacteriaceae Most epidemiological surveys use the integrase gene as a marker to screen for SXT/R391 ICEs in clinical or environmental strains. With the recent reports of closely related elements that carry an alternative integrase gene, it became urgent to investigate whether ICEs that have been left out of the family are a liability for the accuracy of such screenings. In this study, based on comparative genomics, we broaden the SXT/R391 family of ICEs to include atypical ICEs that are often associated with heavy metal resistance.


Assuntos
Proteínas de Bactérias/genética , Integrases/genética , Vibrio cholerae/genética , Sequência de Bases , Cólera/microbiologia , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/genética , Mutagênese Insercional , Fatores de Terminação de Peptídeos/genética , Recombinação Genética , Alinhamento de Sequência
6.
PLoS Genet ; 13(3): e1006705, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28355215

RESUMO

IncC conjugative plasmids and Salmonella genomic island 1 (SGI1) and relatives are frequently associated with multidrug resistance of clinical isolates of pathogenic Enterobacteriaceae. SGI1 is specifically mobilized in trans by IncA and IncC plasmids (commonly referred to as A/C plasmids) following its excision from the chromosome, an event triggered by the transcriptional activator complex AcaCD encoded by these helper plasmids. Although SGI1 is not self-transmissible, it carries three genes, traNS, traHS and traGS, coding for distant homologs of the predicted mating pore subunits TraNC, TraHC and TraGC, respectively, encoded by A/C plasmids. Here we investigated the regulation of traNS and traHGS and the role of these three genes in the transmissibility of SGI1. Transcriptional fusion of the promoter sequences of traNS and traHGS to the reporter gene lacZ confirmed that expression of these genes is inducible by AcaCD. Mating experiments using combinations of deletion mutants of SGI1 and the helper IncC plasmid pVCR94 revealed complex interactions between these two mobile genetic elements. Whereas traNC and traHGC are essential for IncC plasmid transfer, SGI1 could rescue null mutants of each individual gene revealing that TraNS, TraHS and TraGS are functional proteins. Complementation assays of individual traC and traS mutants showed that not only do TraNS/HS/GS replace TraNC/HC/GC in the mating pore encoded by IncC plasmids but also that traGS and traHS are both required for SGI1 optimal transfer. In fact, remodeling of the IncC-encoded mating pore by SGI1 was found to be essential to enhance transfer rate of SGI1 over the helper plasmid. Furthermore, traGS was found to be crucial to allow DNA transfer between cells bearing IncC helper plasmids, thereby suggesting that by remodeling the mating pore SGI1 disables an IncC-encoded entry exclusion mechanism. Hence traS genes facilitate the invasion by SGI1 of cell populations bearing IncC plasmids.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Ilhas Genômicas/genética , Salmonella enterica/genética , Deleção de Sequência/genética , Cromossomos/genética , DNA Bacteriano/genética , Escherichia coli/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequências Repetitivas Dispersas/genética , Plasmídeos/genética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA