Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224541

RESUMO

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagem
2.
Hum Brain Mapp ; 43(1): 300-328, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33615640

RESUMO

The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.


Assuntos
Encéfalo , Variações do Número de Cópias de DNA , Imageamento por Ressonância Magnética , Transtornos Mentais , Transtornos do Neurodesenvolvimento , Neuroimagem , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Humanos , Transtornos Mentais/diagnóstico por imagem , Transtornos Mentais/genética , Transtornos Mentais/patologia , Estudos Multicêntricos como Assunto , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
3.
Am J Psychiatry ; 177(7): 589-600, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32046535

RESUMO

OBJECTIVE: 22q11.2 deletion syndrome (22q11DS) is among the strongest known genetic risk factors for schizophrenia. Previous studies have reported variable alterations in subcortical brain structures in 22q11DS. To better characterize subcortical alterations in 22q11DS, including modulating effects of clinical and genetic heterogeneity, the authors studied a large multicenter neuroimaging cohort from the ENIGMA 22q11.2 Deletion Syndrome Working Group. METHODS: Subcortical structures were measured using harmonized protocols for gross volume and subcortical shape morphometry in 533 individuals with 22q11DS and 330 matched healthy control subjects (age range, 6-56 years; 49% female). RESULTS: Compared with the control group, the 22q11DS group showed lower intracranial volume (ICV) and thalamus, putamen, hippocampus, and amygdala volumes and greater lateral ventricle, caudate, and accumbens volumes (Cohen's d values, -0.90 to 0.93). Shape analysis revealed complex differences in the 22q11DS group across all structures. The larger A-D deletion was associated with more extensive shape alterations compared with the smaller A-B deletion. Participants with 22q11DS with psychosis showed lower ICV and hippocampus, amygdala, and thalamus volumes (Cohen's d values, -0.91 to 0.53) compared with participants with 22q11DS without psychosis. Shape analysis revealed lower thickness and surface area across subregions of these structures. Compared with subcortical findings from other neuropsychiatric disorders studied by the ENIGMA consortium, significant convergence was observed between participants with 22q11DS with psychosis and participants with schizophrenia, bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. CONCLUSIONS: In the largest neuroimaging study of 22q11DS to date, the authors found widespread alterations to subcortical brain structures, which were affected by deletion size and psychotic illness. Findings indicate significant overlap between 22q11DS-associated psychosis, idiopathic schizophrenia, and other severe neuropsychiatric illnesses.


Assuntos
Encéfalo/patologia , Síndrome de DiGeorge/patologia , Transtornos Mentais/patologia , Transtornos Psicóticos/patologia , Adolescente , Adulto , Atrofia/patologia , Mapeamento Encefálico , Estudos de Casos e Controles , Criança , Síndrome de DiGeorge/complicações , Feminino , Humanos , Hipertrofia/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/complicações , Adulto Jovem
4.
Mol Psychiatry ; 25(8): 1822-1834, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-29895892

RESUMO

The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.


Assuntos
Córtex Cerebral/patologia , Deleção Cromossômica , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Adolescente , Adulto , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Psicóticos/genética , Adulto Jovem
5.
Mol Psychiatry ; 25(11): 2818-2831, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-31358905

RESUMO

22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.


Assuntos
Síndrome de DiGeorge/diagnóstico por imagem , Síndrome de DiGeorge/patologia , Imagem de Difusão por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adolescente , Adulto , Anisotropia , Criança , Síndrome de DiGeorge/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Neurodev Disord ; 11(1): 40, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861974

RESUMO

OBJECTIVES: Our ability to generate mental representation of magnitude from sensory information affects how we perceive and experience the world. Reduced resolution of the mental representations formed from sensory inputs may generate impairment in the proximal and distal information processes that utilize these representations. Impairment of spatial and temporal information processing likely underpins the non-verbal cognitive impairments observed in 22q11.2 deletion syndrome (22q11DS). The present study builds on prior research by seeking to quantify the resolution of spatial and temporal representation in children with 22q11DS, sex chromosome aneuploidy (SCA), and a typically developing (TD) control group. PARTICIPANTS AND METHODS: Children (22q11DS = 70, SCA = 49, TD = 46) responded to visual or auditory stimuli with varying difference ratios. The participant's task was to identify which of two sequentially presented stimuli was of larger magnitude in terms of, size, duration, or auditory frequency. Detection threshold was calculated as the minimum difference ratio between the "standard" and the "target" stimuli required to achieve 75% accuracy in detecting that the two stimuli were different. RESULTS: Children with 22q11DS required larger magnitude difference between spatial stimuli for accurate identification compared with both the SCA and TD groups (% difference from standard: 22q11DS = 14; SCA = 8; TD: 7; F = 8.42, p < 0.001). Temporal detection threshold was also higher for the 22q11DS group to both visual (% difference from standard: 22q11DS = 14; SCA = 8; TD = 7; F = 8.33, p < 0.001) and auditory (% difference from standard: 22q11DS = 23; SCA = 12; TD: 8; F = 8.99, p < 0.001) stimuli compared with both the SCA and TD groups, while the SCA and TD groups displayed equivalent performance on these measures (p's > 0.05). Pitch detection threshold did not differ among the groups (p's > 0.05). CONCLUSIONS: The observation of higher detection thresholds to spatial and temporal stimuli indicates further evidence for reduced resolution in both spatial and temporal magnitude representation in 22q11DS, that does not extend to frequency magnitude representation (pitch detection), and which is not explained by generalized cognitive impairment alone. These findings generate further support for the hypothesis that spatiotemporal hypergranularity of mental representations contributes to the non-verbal cognitive impairment seen in 22q11DS.


Assuntos
Atenção/fisiologia , Percepção Auditiva/fisiologia , Síndrome de DiGeorge/fisiopatologia , Conceitos Matemáticos , Transtornos da Percepção/fisiopatologia , Aberrações dos Cromossomos Sexuais , Percepção Espacial/fisiologia , Percepção do Tempo/fisiologia , Percepção Visual/fisiologia , Adolescente , Criança , Síndrome de DiGeorge/complicações , Feminino , Humanos , Masculino , Transtornos da Percepção/etiologia
7.
Hum Brain Mapp ; 39(1): 232-248, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28990258

RESUMO

Occurring in at least 1 in 3,000 live births, chromosome 22q11.2 deletion syndrome (22q11DS) produces a complex phenotype that includes a constellation of medical complications such as congenital cardiac defects, immune deficiency, velopharyngeal dysfunction, and characteristic facial dysmorphic features. There is also an increased incidence of psychiatric diagnosis, especially intellectual disability and ADHD in childhood, lifelong anxiety, and a strikingly high rate of schizophrenia spectrum disorders, which occur in around 30% of adults with 22q11DS. Using innovative computational connectomics, we studied how 22q11DS affects high-level network signatures of hierarchical modularity and its intrinsic geometry in 55 children with confirmed 22q11DS and 27 Typically Developing (TD) children. Results identified 3 subgroups within our 22q11DS sample using a K-means clustering approach based on several midline structural measures-of-interests. Each subgroup exhibited distinct patterns of connectome abnormalities. Subtype 1, containing individuals with generally healthy-looking brains, exhibited no significant differences in either modularity or intrinsic geometry when compared with TD. By contrast, the more anomalous 22q11DS Subtypes 2 and 3 brains revealed significant modular differences in the right hemisphere, while Subtype 3 (the most anomalous anatomy) further exhibited significantly abnormal connectome intrinsic geometry in the form of left-right temporal disintegration. Taken together, our findings supported an overall picture of (a) anterior-posteriorly differential interlobar frontotemporal/frontoparietal dysconnectivity in Subtypes 2 and 3 and (b) differential intralobar dysconnectivity in Subtype 3. Our ongoing studies are focusing on whether these subtypes and their connnectome signatures might be valid biomarkers for predicting the degree of psychosis-proneness risk found in 22q11DS. Hum Brain Mapp 39:232-248, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/fisiopatologia , Conectoma , Síndrome de DiGeorge/fisiopatologia , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Criança , Análise por Conglomerados , Conectoma/métodos , Síndrome de DiGeorge/diagnóstico por imagem , Feminino , Lateralidade Funcional , Humanos , Estudos Longitudinais , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA