Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 32(26): 6600-5, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27280689

RESUMO

Polymer brushes are excellent substrates for the covalent immobilization of a wide variety of molecules due to their unique physicochemical properties and high functional group density. By using reactive microcapillary printing, poly(pentafluorophenyl acrylate) brushes with rapid kinetic rates toward aminolysis can be partially patterned with other click functionalities such as strained cyclooctyne derivatives and sulfonyl fluorides. This trireactive surface can then react locally and selectively in a one pot reaction via three orthogonal chemistries at room temperature: activated ester aminolysis, strain promoted azide-alkyne cycloaddition, and sulfur(VI) fluoride exchange, all of which are tolerant of ambient moisture and oxygen. Furthermore, we demonstrate that these reactions can also be used to create areas of morphologically distinct surface features on the nanoscale, by inducing buckling instabilities in the films and the grafting of nanoparticles. This approach is modular, and allows for the development of highly complex surface motifs patterned with different chemistry and morphology.

2.
ACS Nano ; 9(11): 10961-9, 2015 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-26493442

RESUMO

Creasing in soft polymeric films is a result of substantial compressive stresses that trigger instability beyond a critical strain and have been directly related to failure mechanisms in different materials. However, it has been shown that programming these instabilities into soft materials can lead to new applications, such as particle sorting, deformable capillaries, and stimuli-responsive interfaces. In this work, we present a method for fabricating reproducible nanoscale surface instabilities using reactive microcontacting printing (µCP) on activated ester polymer brush layers of poly(pentafluorophenyl acrylate). The sizes and structures of the nanoscale creases can be modulated by varying the grafting density of the brush substrate and pressure applied during µCP. Stress is generated in the film under confinement due to the molecular weight increase of the side chains during post-polymerization modification, which results in substantial in-plane growth in the film and leads to the observed nanoscale creases.

3.
Langmuir ; 31(37): 10183-9, 2015 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-26317405

RESUMO

Surface-initiated ring-opening polymerization (SI-ROP) of polycaprolactone (PCL) and polylactide (PLA) polymer brushes with controlled degradation rates were prepared on oxide substrates. PCL brushes were polymerized from hydroxyl-terminated monolayers utilizing triazabicyclodecene (TBD) as the polymerization catalyst. A consistent brush thickness of 40 nm could be achieved with a reproducible unique crystalline morphology. The organocatalyzed PCL brushes were chain extended using lactide in the presence of zirconium n-butoxide to successfully grow PCL/PLA block copolymer (PCL-b-PLA) brushes with a final thickness of 55 nm. The degradation properties of "grafted from" PCL brush and the PCL-b-PLA brush were compared to "grafted to" PCL brushes, and we observed that the brush density plays a major role in degradation kinetics. Solutions of methanol/water at pH 14 were used to better solvate the brushes and increase the kinetics of degradation. This framework enables a control of degradation that allows for the precise removal of these coatings.


Assuntos
Compostos Azabicíclicos/química , Poliésteres/química , Polímeros/química , Zircônio/química , Catálise , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA