Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Food Waterborne Parasitol ; 23: e00119, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33817357

RESUMO

Angiostrongylus cantonensis is a well-known pathogen causing eosinophilic meningitis associated with angiostrongyliasis. Humans, as accidental hosts, are infected by consuming undercooked snails containing third-stage larvae. A. malaysiensis is closely related to A. cantonensis and has been described as a potential human pathogen. The two species distribution was recently reported to overlap in the same endemic area, particularly in the Indochina Peninsula. Similar morphological characteristics of the third-stage larva in the snail-intermediate host often lead to misidentification of the two species. Thus, we aimed to develop a sensitive and specific method to detect and discriminate Angiostrongylus third-stage larva by designing species-specific primers based on the mitochondrial cytochrome b gene. We developed the SYBR Green quantitative real-time PCR (qPCR) method for two species-specific detection assays, which could be conducted simultaneously. The method was subsequently employed to detect and identify third-stage larvae of Angiostrongylus isolated from infected Achatina fulica collected from six public parks in Bangkok Metropolitan, Thailand. The method was also a preliminary applied to detect parasite tissue debris in the patients' cerebrospinal fluid (CSF). SYBR Green qPCRs quantitatively detected approximately 10-4 ng of genomic DNA from one larva, facilitating species-specific detection. Based on the pools of third-stage larvae isolated individually from the tissue of each infected A. fulica collected from the public parks, the qPCR results revealed that A. malaysiensis was the predominant species infecting 5.26% of the collected snails. In comparison, coinfection between A. malaysiensis and A. cantonensis was 5.97%, and no single infection of A. cantonensis was detected in A. fulica. Our SYBR Green qPCR method is a useful and inexpensive technique for A. cantonensis and A. malaysiensis discrimination, and the method has sufficient sensitivity to detect isolated larvae from a snail-intermediate host. The ratio of A. cantonensis and A. malaysiensis larvae infecting the snails can also be estimated simultaneously. Our qPCRs can be employed in a molecular survey of A. cantonensis and A. malaysiensis within intermediate hosts and for clinical diagnosis of angiostrongyliasis with CSF specimens in future studies.

3.
Acta Trop ; 211: 105645, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32702297

RESUMO

The Angiostrongylus cantonensis lineage (Nematoda: Metastrongyloidea) consists of the closely related species A. cantonensis, Angiostrongylus malaysiensis, and Angiostrongylus mackerrasae. Various genetic markers have been used for species discrimination in molecular phylogenetic studies of this lineage. However, despite showing potential in other organisms, mitochondrial 12S and 16S ribosomal RNA (rRNA) genes have not been used for Angiostrongylus species discrimination. Therefore, this study assessed these genes' suitability for inter- and intraspecies discrimination in the A. cantonensis lineage. The ultimate aim was to provide a novel genetic marker to support existing phylogenies. Sixty adult Angiostrongylus spp. worms from four geographic locations in Thailand were identified morphologically before molecular identification with 12S and 16S rRNA genes. Neighbor-joining and maximum likelihood algorithms were used for phylogenetic analyzes, and sequence variation was calculated to determine whether the genes could be used to discriminate among species. Furthermore, sequence variation was compared among previously used genetic markers to evaluate the robustness of the 12S and 16S rRNA genes as markers. Using both markers, the A. cantonensis lineage formed a monophyletic clade with a clear separation between A. cantonensis, A. malaysiensis, and A. mackerrasae. From our representative A. cantonensis and A. malaysiensis specimens, the genetic distance between the two clades was 6.8% -7.9% and 7.9% -10.0% for 12S and 16S rRNA genes, respectively, which is sufficient interspecific genetic variation for species discrimination. Higher levels of genetic variation were observed for the 16S rRNA gene, with 12 haplotypes and an intraspecific variation ≤2.2%. Thus, as a genetic marker, the 16S rRNA gene is comparable to mitochondrial protein-coding genes, which are commonly used in intra-level Angiostrongylus spp. studies. In conclusion, mitochondrial 12S and 16S rRNA genes can discriminate among closely related species in the A. cantonensis lineage, and they represent novel genetic markers for supporting existing phylogenies and verifying the phylogenetic position of A. mackerrasae.


Assuntos
Angiostrongylus cantonensis/genética , Genes Mitocondriais , Marcadores Genéticos , Filogenia , Animais , Haplótipos , RNA Ribossômico 16S/genética
4.
Evol Appl ; 11(8): 1257-1269, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30151038

RESUMO

Angiostrongylus cantonensis, the rat lungworm, is a zoonotic pathogen that is one of the leading causes of eosinophilic meningitis worldwide. This parasite is regarded as an emerging pathogen with a global range expansion out of southeastern Asia post-WWII. To date, molecular systematic/phylogeographic studies on A. cantonensis have mainly used two mitochondrial (mtDNA) markers, cytochrome c oxidase 1 (CO1) and cytochrome b (CYTB), where the focus has largely been descriptive in terms of reporting local patterns of haplotype variants. In order to look for more global evolutionary patterns, we herein provide a collective phylogenetic assessment using the six available whole mtDNA genome samples that have been tagged as A. cantonensis, A. malaysiensis, or A. mackerrasae along with all other GenBank CO1 and CYTB partial sequences that carry these species identifiers. The results reveal three important complications that researchers will need to be aware of, or will need to resolve, prior to conducting future molecular evolutionary studies on A. cantonensis. These three problems are (i) incongruence between taxonomic identifications and mtDNA variants (haplotypes or whole mtDNA genome samples), (ii) the presence of a CYTB mtDNA pseudogene, and (iii) the need to verify A. mackerrasae as a species along with other possible cryptic lineages, of which there is suggestive evidence (i.e., A. cantonensis could be a species complex). We provided a discussion of how these complications are hurdles to our understanding of the global epidemiology of angiostrongyliasis. We call for future studies to be more explicit in morphological traits used for identifications (e.g., provide measurements). Moreover, it will be necessary to repeat prior morphological and life-history studies while simultaneously using sequence data in order to assess possible associations between critical epidemiological data (e.g., biogeography, virulence/pathology, host species use) and specific lineages.

5.
Mol Phylogenet Evol ; 107: 404-414, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27940331

RESUMO

Delimitation of species is still a necessity among parasitic pathogens especially where morphological characters provide limited discernibility. Identification of cryptic lineages (independently evolving lineages that are morphologically similar) is critical as there could be lineage-specific traits that are of epidemiological importance. Angiostrongylus cantonensis is a zoonotic pathogen that can cause eosinophilic meningitis in humans. Recent reports of single marker sequence divergence hint at the potential for cryptic diversity in this lungworm. However, to definitively address if single marker divergence corresponds to independent evolving lineages, a multilocus approach is necessary. Using multilocus data, our goal was to determine if there were cryptic lineages within Thailand, a country plagued by several outbreaks and isolated cases of A. cantonensis infection. We analyzed the genetic structure of A. cantonensis samples collected from snails, Achatina fulica, across provinces in Thailand. Multilocus data (mitochondrial sequence data and 12 nuclear microsatellites) and individual based analyses were used to test for cryptic lineages. We found strong linkage disequilibrium patterns between mitochondrial haplotypes and nuclear-identified genetic clusters. There were clearly two divergent and independent clades. Moreover, within each clade, the data suggested additional substructure where individual provinces were likely to harbor unique genetic clusters. The results indicate there are at minimum two and possibly up to eight cryptic lineages within the assumed single species of A. cantonensis. Importantly, the two main clades do not show geographic affiliation and can be found in sympatry. With recent studies highlighting A. cantonensis strain diversity in pathogenicity and infectivity, it will be important to determine if these critical epidemiological traits are associated with specific lineages.


Assuntos
Angiostrongylus cantonensis/classificação , Angiostrongylus cantonensis/genética , Variação Genética , Filogenia , Zoonoses/parasitologia , Animais , Teorema de Bayes , Citocromos b/genética , DNA Mitocondrial/genética , Geografia , Haplótipos/genética , Humanos , Repetições de Microssatélites/genética , Família Multigênica , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA