Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296892

RESUMO

Quantum dots (QDs) are widely used in optoelectronics, lighting, and photovoltaics leading to their potential release into the environment. The most promising alternative to the highly toxic cadmium selenide (CdSe) QDs are indium phosphide (InP) QDs, which show reduced toxicity and comparable optical and electronic properties. QD degradation leads to the release of toxic metal ions into the environment. Coating the QD core with robust shell(s) composed of another semi-conductor material enhances their properties and protects the QD from degradation. We recently developed double-shelled InP QDs, which proved to be less toxic than single-shell QDs. In the present study, we confirm their reduced cytotoxicity, with an LC50 at 77 nM for pristine gradient shell QDs and >100 nM for pristine thin and thick shell QDs. We also confirm that these three QDs, when exposed to simulated sunlight, show greater cytotoxicity compared to pristine ones, with LC50 ranging from 15 to 23 nM. Using a combination of spectroscopic and microscopic techniques, we characterize the degradation kinetics and transformation products of single- and double-shell QDs, when exposed to solar light at high temperature, simulating environmental conditions. Non-toxic pristine QDs degrade to form toxic In−phosphate, In−carboxylate, Zn−phosphate, and oxidized Se, all of which precipitate as heterogeneous deposits. Comparison of their degradation kinetics highlights that the QDs bearing the thickest ZnS outer shell are, as expected, the most resistant to photodegradation among the three tested QDs, as gradient shell, thin shell, and thick shell QDs lose their optical properties in less than 15 min, 60 min, and more than 90 min, respectively. They exhibit the highest photoluminescence efficiency, i.e., the best functionality, with a photoluminescence quantum yield in aqueous solution of 24%, as compared to 18% for the gradient shell and thin shell QDs. Therefore, they can be considered as safer-by-design QDs.

2.
Front Toxicol ; 3: 636976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35295141

RESUMO

Quantum dots (QDs) are colloidal fluorescent semiconductor nanocrystals with exceptional optical properties. Their widespread use, particularly in light-emitting diodes (LEDs), displays, and photovoltaics, is questioning their potential toxicity. The most widely used QDs are CdSe and CdTe QDs, but due to the toxicity of cadmium (Cd), their use in electrical and electronic equipment is now restricted in the European Union through the Restriction of hazardous substances in electrical and electronic equipment (RoHS) directive. This has prompted the development of safer alternatives to Cd-based QDs; among them, InP QDs are the most promising ones. We recently developed RoHS-compliant QDs with an alloyed core composed of InZnP coated with a Zn(Se,S) gradient shell, which was further coated with an additional ZnS shell to protect the QDs from oxidative surface degradation. In this study, the toxicity of single-shelled InZnP/Zn(Se,S) core/gradient shell and of double-shelled InZnP/Zn(Se,S)/ZnS core/shell/shell QDs was evaluated both in their pristine form and after aging in a climatic chamber, mimicking a realistic environmental weathering. We show that both pristine and aged QDs, whatever their composition, accumulate in the cytoplasm of human primary keratinocytes where they form agglomerates at the vicinity of the nucleus. Pristine QDs do not show overt toxicity to cells, while aged QDs show cytotoxicity and genotoxicity and significantly modulate the mRNA expression of proteins involved in zinc homeostasis, cell redox response, and inflammation. While the three aged QDs show similar toxicity, the toxicity of pristine gradient-shell QD is higher than that of pristine double-shell QD, confirming that adding a second shell is a promising safer-by-design strategy. Taken together, these results suggest that end-of-life degradation products from InP-based QDs are detrimental to skin cells in case of accidental exposure and that the mechanisms driving this effect are oxidative stress, inflammation, and disturbance of cell metal homeostasis, particularly Zn homeostasis. Further efforts to promote safer-by-design formulations of QDs, for instance by reducing the In and Zn content and/or implementing a more robust outer shell, are therefore warranted.

3.
Nanomaterials (Basel) ; 10(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708108

RESUMO

Synthetic amorphous silica (SAS) is used in a plethora of applications and included in many daily products to which humans are exposed via inhalation, ingestion, or skin contact. This poses the question of their potential toxicity, particularly towards macrophages, which show specific sensitivity to this material. SAS represents an ideal candidate for the adsorption of environmental contaminants due to its large surface area and could consequently modulate their toxicity. In this study, we assessed the toxicity towards macrophages and intestinal epithelial cells of three SAS particles, either isolated SiO2 nanoparticles (LS30) or SiO2 particles composed of agglomerated-aggregates of fused primary particles, either food-grade (E551) or non-food-grade (Fumed silica). These particles were applied to cells either alone or in combination with genotoxic co-contaminants, i.e., benzo[a]pyrene (B[a]P) and methane methylsulfonate (MMS). We show that macrophages are much more sensitive to these toxic agents than a non-differenciated co-culture of Caco-2 and HT29-MTX cells, used here as a model of intestinal epithelium. Co-exposure to SiO2 and MMS causes DNA damage in a synergistic way, which is not explained by the modulation of DNA repair protein mRNA expression. Together, this suggests that SiO2 particles could adsorb genotoxic agents on their surface and, consequently, increase their DNA damaging potential.

4.
Artigo em Inglês | MEDLINE | ID: mdl-31561889

RESUMO

Iron oxide nanoparticles (ION) have received much attention for their utility in biomedical applications, such as magnetic resonance imaging, drug delivery and hyperthermia, but concerns regarding their potential harmful effects are also growing. Even though ION may induce different toxic effects in a wide variety of cell types and animal systems, there is a notable lack of toxicological data on the human nervous system, particularly important given the increasing number of applications on this specific system. An important mechanism of nanotoxicity is reactive oxygen species (ROS) generation and oxidative stress. On this basis, the main objective of this work was to assess the oxidative potential of silica-coated (S-ION) and oleic acid-coated (O-ION) ION on human SH-SY5Y neuronal and A172 glial cells. To this aim, ability of ION to generate ROS (both in the absence and presence of cells) was determined, and consequences of oxidative potential were assessed (i) on DNA by means of the 8-oxo-7,8-dihydroguanine DNA glycosylase (OGG1)-modified comet assay, and (ii) on antioxidant reserves by analyzing ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG). Conditions tested included a range of concentrations, two exposure times (3 and 24 h), and absence and presence of serum in the cell culture media. Results confirmed that, even though ION were not able to produce ROS in acellular environments, ROS formation was increased in the neuronal and glial cells by ION exposure, and was parallel to induction of oxidative DNA damage and, only in the case of neuronal cells treated with S-ION, to decreases in the GSH/GSSG ratio. Present findings suggest the production of oxidative stress as a potential action mechanism leading to the previously reported cellular effects, and indicate that ION may pose a health risk to human nervous system cells by generating oxidative stress, and thus should be used with caution.


Assuntos
Nanopartículas de Magnetita/toxicidade , Neuroglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo , Linhagem Celular Tumoral , Meios de Cultura Livres de Soro , Dano ao DNA , DNA Glicosilases/farmacologia , Relação Dose-Resposta a Droga , Glioblastoma/patologia , Glutationa/metabolismo , Humanos , Nanopartículas de Magnetita/química , Neuroblastoma/patologia , Ácido Oleico , Oxirredução , Tamanho da Partícula , Espécies Reativas de Oxigênio , Dióxido de Silício , Propriedades de Superfície
5.
Artigo em Inglês | MEDLINE | ID: mdl-31561898

RESUMO

TiO2 particles are widely used in products for everyday consumption, such as cosmetics and food; their possible adverse effects on human health must therefore be investigated. The aim of this study was to document in vitro impact of the food additive E171, i.e. TiO2, and of TiO2 nanoparticles, on a co-culture of Caco-2 and HT29-MTX cells, which is an in vitro model for human intestine. Cells were exposed to TiO2 particles three days after seeding, i.e. while they were not fully differentiated. Cell viability, reactive oxygen species (ROS) levels and DNA integrity were assessed, by MTT assay, DCFH-DA assay, alkaline and Fpg-modified comet assay and 8-oxo-dGuo measurement by HPLC-MS/MS. The mRNA expression of genes involved in ROS regulation, DNA repair via base-excision repair, and endoplasmic reticulum stress was assessed by RT-qPCR. Exposure to TiO2 particles resulted in increased intracellular ROS levels, but did not impair cell viability and did not cause any oxidative damage to DNA. Only minor changes in mRNA expression were detected. Altogether, this shows that E171 food additive and TiO2 nanoparticles only produce minor effects to this in vitro intestinal cell model.


Assuntos
Células CACO-2/efeitos dos fármacos , Aditivos Alimentares/toxicidade , Células HT29/efeitos dos fármacos , Titânio/toxicidade , 8-Hidroxi-2'-Desoxiguanosina/análise , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , DNA de Neoplasias/efeitos dos fármacos , DNA de Neoplasias/genética , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Aditivos Alimentares/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo , Tamanho da Partícula , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Espécies Reativas de Oxigênio/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
6.
Front Chem ; 7: 466, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316974

RESUMO

With the goal to improve their photostability, InP-based QDs are passivated with three types of inorganic shells, namely (i) a gradient ZnSexS1-x shell, (ii) an additional ZnS shell on top of the gradient shell with two different thicknesses (core/shell/shell, CSS), (iii) an alumina coating on top of ZnS. All three systems have photoluminescence quantum yields (PLQY) > 50% and similar PL decay times (64-67 ns). To assess their photostability they are incorporated into a transparent poly (methyl methacrylate) (PMMA) matrix and exposed to continuous irradiation with simulated sunlight in a climate chamber. The alumina coated core/shell system exhibits the highest stability in terms of PLQY retention as well as the lowest shift of the PL maximum and lowest increase of the PL linewidth, followed by the CSS QDs and finally the gradient shell system. By means of XPS studies we identify the degradation of the ZnS outer layer and concomitant oxidation of the emissive InZnP core as the main origins of degradation in the gradient structure. These modifications do not occur in the case of the alumina-capped sample, which exhibits excellent chemical stability. The gradient shell and CSS systems could be transferred to the aqueous phase using surface ligand exchange with penicillamine. Cytotoxicity studies on human primary keratinocytes revealed that exposure for 24 h to 6.25-100 nM of QDs did not affect cell viability. However, a trend toward reduced cell proliferation is observed for higher concentrations of gradient shell and CSS QDs with a thin ZnS shell, while CSS QDs with a thicker ZnS shell do not exhibit any impact.

7.
Nanoscale ; 9(27): 9641-9658, 2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28671223

RESUMO

The technological and economic benefits of engineered nanomaterials may be offset by their adverse effects on living organisms. One of the highly produced nanomaterials under such scrutiny is amorphous silica nanoparticles, which are known to have an appreciable, although reversible, inflammatory potential. This is due to their selective toxicity toward macrophages, and it is thus important to study the cellular responses of this cell type to silica nanoparticles to better understand the direct or indirect adverse effects of nanosilica. We have here studied the responses of the RAW264.7 murine macrophage cells and of the control MPC11 plasma cells to subtoxic concentrations of nanosilica, using a combination of proteomic and targeted approaches. This allowed us to document alterations in the cellular cytoskeleton, in the phagocytic capacity of the cells as well as their ability to respond to bacterial stimuli. More surprisingly, silica nanoparticles also induce a greater sensitivity of macrophages to DNA alkylating agents, such as styrene oxide, even at doses which do not induce any appreciable cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA