Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Chem Commun (Camb) ; 60(39): 5217-5220, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38656223

RESUMO

Hereby, we describe the synthesis of a self-assembled syn-cryptophane using dynamic nucleophilic aromatic substitution of tetrazines. 1H NMR cage titrations reveal that the tetramethylammonium cation binds under slow exchange conditions while counter-anions show a fast exchange regime. Finally, the cryptophane can be disassembled by the addition of thiols allowing guest release.

2.
J Org Chem ; 89(8): 5314-5319, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38568746

RESUMO

Polycyclic aromatic hydrocarbons including heteroatoms have found a wide range of applications, for instance, in supramolecular chemistry or material science. Phosphangulene derivatives are P-containing polycyclic aromatic hydrocarbons presenting a concave aromatic surface suitable for building supramolecular receptors. However, the applications of this convenient building block have been strongly hampered by a difficult and multistep preparation requiring several protection-deprotection sequences along with the use of harmful reagents. Here, we report a straightforward, protecting-group-free, three-step, and hundred-milligram-scale synthesis of a chiral phosphangulene oxide derivative via a triple phospho-Fries rearrangement. This compound was easily resolved by chiral HPLC and further functionalized, giving rise to versatile chiral phosphangulene derivatives. Following this strategy, chiral phosphangulene oxides with low symmetry were synthesized. Molecular crystal structures revealed a variety of molecular organization in the solid. This opens the way to wider use of this compound as a building block for cages or new materials.

3.
Chempluschem ; 89(4): e202300558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37950861

RESUMO

A new hemicryptophane host with a ditopic molecular cavity combining a cyclotriveratrylene (CTV) unit with a tris-urea moiety was synthesized. The complexation of halides, tetramethylammonium (TMA+) cation, and ion pairs was investigated. A positive cooperativity was observed, since halides display a higher binding constant when a TMA+ cation is already present inside the cage. When TMA+ was complexed alone, a decrease of temperature from 298 K to 230 K was required to switch from a fast to a slow exchange regime on the NMR time scale. Nevertheless, the prior complexation of a halide guest in the lower part of the host resulted in significant decrease of the exchange rate of the subsequent complexation of the TMA+ cation. Under these conditions, the 1H NMR signals characteristic of a slow exchange regime were observed at 298 K. Addition of an excess of salts, increases the ionic strength of the solution, restoring the fast exchange dynamics. This result provides insight on how the exchange rate of a cation guest can be modulated by the complexation of a co-guest anion.

4.
Chempluschem ; 88(7): e202300291, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37395143

RESUMO

The recognition of carbohydrate plays a key role in numerous biological processes. Thus, artificial receptors have been synthesized to mimic these biological systems. To date, most of the receptors reported for carbohydrate complexation present highly symmetrical cavities, probably because their syntheses require less synthetic efforts and are easier to achieve and control. However, carbohydrates display complex, asymmetrical structures suggesting that hosts with low symmetry might be more adapted to recognize these guests. Here, we described the strategies that have been used to complex carbohydrates with macrocycles and cages presenting low symmetry and the potential of this approach. Self-assembled cages are first described, then covalent macrocycles and cages are presented and for each example the binding properties of low-symmetry systems are compared to those of their higher-symmetry counterparts.

5.
Chemistry ; 29(28): e202203887, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-36779250

RESUMO

Chlordecone (CLD), a Persistent Organic Pollutant, is still present in water and food chain of the French West Indies (FWI), leading to dramatical public health problems. One of the major issues is the lack of an easy, non-expensive, sensitive and robust method for the detection of chlordecone to ensure chlordecone-free water and foods for the residents of the FWI. This study reports on the development of a fluorescent molecular cage that allows a simple and convenient detection of chlordecone in water at environmental concentration. The specific structural features of chlordecone prompted the choice of hemicryptophanes as receptor. First, the size, shape of the cavity, as well as the recognition units, were optimized to identify the most efficient non fluorescent host for CLD complexation. Then, this selected compound was equipped with fluorophores at different positions in order to find the most efficient system for CLD detection by fluorescence. Among the two most promising fluorescent cages, the newly synthesized hemicryptophane with biphenyl moieties allowed the development of a fast, easy, reproducible and cheap procedure to detect CLD in water. Based on its sensitivity and scalability, with modulation of hemicryptophane, concentration, CLD concentrations were estimated over five orders of magnitude (10-2 -103  µg/L) including the environmental levels of contamination and the permissible limit for drinking water in the FWI.

6.
Chemistry ; 29(9): e202203212, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36563113

RESUMO

The design of molecular cages with low symmetry could allow for more specific tuning of their properties and better mimic the unsymmetrical and complex environment of protein pockets. However, the added value of lowering symmetry of molecular receptors has been rarely demonstrated. Herein, C3 - and C1 -symmetrical cages, presenting the same recognition sites, have been synthesized and investigated as hosts for carbohydrate recognition. Structurally related derivatives of glucose, galactose and mannose were found to have greater affinity to the receptor with the lowest symmetry than to their C3 -symmetrical analogue. According to the host cavity modelling, the C1 symmetry receptor exhibits a wider opening than its C3 -symmetrical counterpart, providing easier access and thus promoting guest proximity to binding sites. Moreover, our results show the high stereo- and substrate selectivity of the C1 symmetry cage with respect to its C3 counterpart in the recognition of sugars.


Assuntos
Carboidratos , Galactose , Modelos Moleculares , Sítios de Ligação , Galactose/química , Glucose/metabolismo , Proteínas de Transporte/química
7.
Chem Asian J ; 17(9): e202200115, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35363422

RESUMO

Haloazaphosphatranes are the halogenated parents of proazaphosphatranes, also known as Verkade's superbase. While the synthesis of iodo-, bromo- and chloroazaphosphatranes was reported more than thirty years ago by J. G. Verkade, the first synthesis of fluoroazaphosphatranes was only described in 2018 by Stephan et al. Currently, no common and versatile procedure exists to access fluoroazaphosphatranes platform with different structural characteristics. In this report, a new and simple synthesis of this class of compounds was developed based on the nucleophilic attack of the fluoride anion on chloroazaphosphatrane derivatives with good to high isolated yields for the corresponding fluoroazaphosphatranes (70-92%). The scope of the reaction was widened to fluoroazaphosphatranes bearing various substituents and X-ray molecular structures of two of them are reported. The stability of fluoroazaphosphatranes toward nucleophilic solvents like water has been investigated. As they revealed much more robust cations than their chloroazaphosphatrane parents, their chloride salts were tested as organocatalysts for the formation of cyclic carbonates from epoxides and CO2 . Fluoroazaphosphatranes proved to be both efficient and stable catalytic systems for CO2 conversion with catalytic activities similar to those of azaphosphatranes, and no decomposition of the cation was observed at the end of reaction.


Assuntos
Dióxido de Carbono , Carbonatos , Dióxido de Carbono/química , Carbonatos/química , Catálise , Compostos de Epóxi/química , Estrutura Molecular
8.
Chem Commun (Camb) ; 58(20): 3330-3333, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35188150

RESUMO

Cryptophane cages can adopt either an anti or syn configuration that present different recognition properties. While the synthesis of anti-cryptophanes is well reported, the synthesis of syn-cryptophanes remains a challenge. Herein, we demonstrate that the use of HFIP as a co-solvent during the second ring closure reaction significantly affects the regioselectivity, providing easier access to the syn-cryptophane stereomers.

9.
J Org Chem ; 86(21): 15055-15062, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34597053

RESUMO

Two new hemicryptophanes combining a cyclotriveratrylene unit with either an aminotrisamide or a tris(2-aminoethyl)amine (tren) moiety have been synthesized. Although a conventional synthesis approach was used, the molecular cages obtained are devoid of the expected C3 symmetry. NMR analyses and X-ray crystal structure determination showed that these hemicryptophanes exhibited C1 symmetry due to the unusual arrangement of the substituents of the cyclotriveratrylene unit. This unprecedented arrangement is related to a change in the regioselectivity of the Friedel-Crafts reactions that led to the CTV cap. This constitutes an original approach to access enantiopure chiral molecular cages with low symmetry.

10.
Inorg Chem ; 60(16): 11964-11973, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34319095

RESUMO

Chloroazaphosphatranes, the corresponding halogenophosphonium cations of the Verkade superbases, were evaluated as a new motif for halogen bonding (XB). Their modulable synthesis allowed for synthetizing chloroazaphosphatranes with various substituents on the nitrogen atoms. The binding constants determined from NMR titration experiments for Cl-, Br-, I-, AcO-, and CN- anions are comparable to those obtained with conventional iodine-based monodentate XB receptors. Remarkably, the protonated azaphosphatrane counterparts display no affinity for anions under the same conditions. The strength of the XB interaction is, to some extent, related to the basicity of the corresponding Verkade superbase. The halogen bonding abilities of this new class of halogen donor motif were also revealed by the Δδ(31P) NMR shift observed in CD2Cl2 solution in the presence of triethylphosphine oxide (TEPO). Thus, chloroazaphosphatranes constitute a new class of halogen bond donors, expanding the repertory of XB motifs mainly based on CAr-I bonds.

11.
Chempluschem ; 85(5): 977-984, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32410370

RESUMO

Proazaphosphatranes (also named Verkade's superbases) and their azaphosphatrane conjugated acids have been recently been shown to be confined in either covalent or self-assembled molecular cages, or immobilized in nanopores of hybrid materials. The encapsulation of these phosphorus moieties turns out to strongly affect both their acid-base, catalytic, and recognition properties. The thermodynamics and kinetics of the proton transfer as well as the selectivity and catalytic activities of Verkade's superbases were strongly changed upon their confinement in a hemicryptophane cavity. Moreover, self-assembled cages, including azaphosphatrane moieties, were found to display remarkable anion recognition properties in water. In this Minireview, these new aspects of the chemistry of aza- and proaza-phosphatranes are presented, in order to highlight the great potential of such an approach.

12.
J Org Chem ; 85(10): 6400-6407, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32249580

RESUMO

The synthesis of two new fluorescent hemicryptophanes is reported. They were found to be efficient and selective receptors for acetylcholine over choline. When compared to other hemicryptophane hosts previously reported for the selective recognition of acetylcholine, they display improved fluorescent properties: their maximum emission wavelengths are red-shifted and the quantum yields are higher. NMR titration experiments and density functional theory (DFT) calculations support the results obtained from fluorescence spectroscopy and give insights into the interactions involved in the host/guest complexes and into the selectivity for acetylcholine over choline.

13.
J Org Chem ; 85(7): 4706-4711, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32153196

RESUMO

A highly selective recognition of fluoride was achieved through the design of a small hemicryptophane cage (3) presenting a southern tris-urea hosting moiety. The resulting host-guest complex has been characterized by electrospray ionization-high-resolution mass spectrometry, 1H and 19F NMR, and X-ray diffraction techniques. In particular, X-ray diffraction analysis of [3·F-] reveals that the encapsulation of one fluoride, within 3, occurs through NH···F- H-bonding with the six NH residues of the tris-urea ligand. An association constant of 1200 M-1 was extracted from 1H NMR titration experiments, indicating that efficient fluoride binding also occurs in solution. Finally, in sharp contrast with previously reported urea-based hemicryptophane hosts, the small preorganized cavity found in 3 allows for an exclusive selectivity for fluoride over other competing halides.

14.
Org Lett ; 22(3): 891-895, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31985232

RESUMO

We report on the synthesis of C3-symmetric enantiopure cage molecules 1, which exhibit remarkable to exclusive enantioselective recognition properties toward chiral ammonium neurotransmitters. Strong changes in the substrate selectivity are also observed when different stereoisomers of 1 are used. Furthermore, protonation/deprotonation induces a reversible modification of the conformation of 1, which switches from an imploded to an inflated form, leading to ejection and reuptake of the guest initially encaged inside the cavity.


Assuntos
Compostos de Amônio/química , Neurotransmissores/química , Compostos de Amônio/síntese química , Estrutura Molecular , Neurotransmissores/síntese química , Estereoisomerismo
15.
Chirality ; 32(2): 139-146, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31847051

RESUMO

Verkade's superbases, entrapped in the cavity of enantiopure hemicryptophane cages, have been synthesized with enantiomeric excess (ee) superior to 98%. Their absolute configuration has been determined by using electronic circular dichroism (ECD) spectroscopy. These enantiopure encaged superbases turned out to be efficient chiral derivatizing agents for chiral azides, underlining that the chirality of the cycloveratrylene (CTV) macrocycle induces different magnetic and chemical environments around the phosphazide functions.

16.
Chirality ; 31(11): 910-916, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31476080

RESUMO

The five-steps synthesis of a hemicryptophane cage combining a benzene-1,3,5-tricarboxamide unit and a cyclotriveratrylene (CTV) moiety is described. Chiral high-performance liquid chromatography (HPLC) was used to resolve the racemic mixture. The absolute configuration of the isolated enantiomers was assigned by comparison of the experimental electronic circular dichroism (ECD) spectra with the calculated ones. X-ray molecular structures reveal that the capped benzene-1,3,5-tricarboxamide unit adopts a structurally chiral conformation in solid state: the chirality of CTV moiety controls the Λ or Δ orientation of the three amides.

17.
Org Biomol Chem ; 17(21): 5253-5257, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31106320

RESUMO

A fluorescent hemicryptophane has been synthesized and can be used as a turn on receptor of acetylcholine. A binding constant of 2.4 × 104 M-1 was measured for this neurotransmitter, and its selective and sensitive detection over choline and choline phosphate was achieved. NMR and DFT calculations provide insight into the interactions involved in this selective recognition process.

18.
Inorg Chem ; 58(11): 7220-7228, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31081621

RESUMO

Non-heme iron, vanadium, and copper complexes bearing hemicryptophane cavities were evaluated in the oxidation of methane in water by hydrogen peroxide. According to 1H nuclear magnetic resonance studies, a hydrophobic hemicryptophane cage accommodates a methane molecule in the proximity of the oxidizing site, leading to an improvement in the efficiency and selectivity for CH3OH and CH3OOH compared to those of the analogous complexes devoid of a hemicryptophane cage. While copper complexes showed low catalytic efficiency, their vanadium and iron counterparts exhibited higher turnover numbers, ≤13.2 and ≤9.2, respectively, providing target primary oxidation products (CH3OH and CH3OOH) as well as over-oxidation products (HCHO and HCOOH). In the case of caged vanadium complexes, the confinement effect was found to improve either the selectivity for CH3OH and CH3OOH (≤15%) or the catalytic efficiency. The confined space of the hydrophobic pocket of iron-based supramolecular complexes plays a significant role in the improvement of both the selectivity (≤27% for CH3OH and CH3OOH) and the turnover number of methane oxidation. These results indicate that the supramolecular approach is a promising strategy for the development of efficient and selective bioinspired catalysts for the mild oxidation of methane to methanol.

19.
Org Lett ; 21(7): 1999-2003, 2019 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-30855968

RESUMO

The polytopic hemicryptophane cage HC1 combining a cyclotriveratrylene (CTV) unit and a tris(2-aminoethyl)amine (tren) moiety connected by three 2-hydroxyisophthalamide linkers was synthesized in 12 steps. The resulting highly functionalized covalent host is soluble in aqueous medium and has been used to complex Gd(III) ion. The Gd(III)@HC1 complex presents promising relaxivity properties when compared to the clinically used Dotarem MRI agent.

20.
Chemistry ; 25(13): 3337-3342, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30548987

RESUMO

The synthesis of a hemicryptophane cage combining a CTV unit with a C3 symmetrical moiety bearing three urea functions is reported. This host was found to bind anions with higher binding constants than other previously reported hemicryptophanes. Due to its heteroditopic character this cage proved to be an efficient ion-pair receptor. The best cooperativity effect was observed for the tetramethylammonium bromide (TMABr) salt, which was confirmed and rationalized by DFT calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA