Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Database (Oxford) ; 20242024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39167719

RESUMO

MicroRNAs are key players involved in stress responses in plants and reports are available on the role of miRNAs in drought stress response in rice. This work reports the development of a database, RiceMetaSys: Drought-miR, based on the meta-analysis of publicly available sRNA datasets. From 28 drought stress-specific sRNA datasets, we identified 216 drought-responsive miRNAs (DRMs). The major features of the database include genotype-, tissue- and miRNA ID-specific search options and comparison of genotypes to identify common miRNAs. Co-localization of the DRMs with the known quantitative trait loci (QTLs), i.e., meta-QTL regions governing drought tolerance in rice pertaining to different drought adaptive traits, narrowed down this to 37 promising DRMs. To identify the high confidence target genes of DRMs under drought stress, degradome datasets and web resource on drought-responsive genes (RiceMetaSys: DRG) were used. Out of the 216 unique DRMs, only 193 had targets with high stringent parameters. Out of the 1081 target genes identified by Degradome datasets, 730 showed differential expression under drought stress in at least one accession. To retrieve complete information on the target genes, the database has been linked with RiceMetaSys: DRG. Further, we updated the RiceMetaSys: DRGv1 developed earlier with the addition of DRGs identified from RNA-seq datasets from five rice genotypes. We also identified 759 putative novel miRNAs and their target genes employing stringent criteria. Novel miRNA search has all the search options of known miRNAs and additionally, it gives information on their in silico validation features. Simple sequence repeat markers for both the miRNAs and their target genes have also been designed and made available in the database. Network analysis of the target genes identified 60 hub genes which primarily act through abscisic acid pathway and jasmonic acid pathway. Co-localization of the hub genes with the meta-QTL regions governing drought tolerance narrowed down this to 16 most promising DRGs. Database URL: http://14.139.229.201/RiceMetaSys_miRNA Updated database of RiceMetaSys URL: http://14.139.229.201/RiceMetaSysA/Drought/.


Assuntos
Secas , MicroRNAs , Oryza , Locos de Características Quantitativas , RNA Mensageiro , Oryza/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética , RNA de Plantas/genética , Bases de Dados Genéticas
2.
BMC Genomics ; 24(1): 526, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674140

RESUMO

To combat drought stress in rice, a major threat to global food security, three major quantitative trait loci for 'yield under drought stress' (qDTYs) were successfully exploited in the last decade. However, their molecular basis still remains unknown. To understand the role of secondary regulation by miRNA in drought stress response and their relation, if any, with the three qDTYs, the miRNA dynamics under drought stress was studied at booting stage in two drought tolerant (Sahbaghi Dhan and Vandana) and one drought sensitive (IR 20) cultivars. In total, 53 known and 40 novel differentially expressed (DE) miRNAs were identified. The primary drought responsive miRNAs were Osa-MIR2919, Osa-MIR3979, Osa-MIR159f, Osa-MIR156k, Osa-MIR528, Osa-MIR530, Osa-MIR2091, Osa-MIR531a, Osa-MIR531b as well as three novel ones. Sixty-one target genes that corresponded to 11 known and 4 novel DE miRNAs were found to be co-localized with the three qDTYs, out of the 1746 target genes identified. We could validate miRNA-mRNA expression under drought for nine known and three novel miRNAs in eight different rice genotypes showing varying degree of tolerance. From our study, Osa-MIR2919, Osa-MIR3979, Osa-MIR528, Osa-MIR2091-5p and Chr01_11911S14Astr and their target genes LOC_Os01g72000, LOC_Os01g66890, LOC_Os01g57990, LOC_Os01g56780, LOC_Os01g72834, LOC_Os01g61880 and LOC_Os01g72780 were identified as the most promising candidates for drought tolerance at booting stage. Of these, Osa-MIR2919 with 19 target genes in the qDTYs is being reported for the first time. It acts as a negative regulator of drought stress tolerance by modulating the cytokinin and brassinosteroid signalling pathway.


Assuntos
MicroRNAs , Oryza , Secas , Oryza/genética , Locos de Características Quantitativas , Resistência à Seca , MicroRNAs/genética
3.
Plants (Basel) ; 12(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37111920

RESUMO

In the current global warming scenario, it is imperative to develop crops with improved heat tolerance or acclimation, for which knowledge of major heat stress-tolerant genes or genomic regions is a prerequisite. Though several quantitative trait loci (QTLs) for heat tolerance have been mapped in rice, candidate genes from these QTLs have not been reported yet. The meta-analysis of microarray datasets for heat stress in rice can give us a better genomic resource for the dissection of QTLs and the identification of major candidate genes for heat stress tolerance. In the present study, a database, RiceMetaSys-H, comprising 4227 heat stress-responsive genes (HRGs), was created using seven publicly available microarray datasets. This included in-house-generated microarray datasets of Nagina 22 (N22) and IR64 subjected to 8 days of heat stress. The database has provisions for searching the HRGs through genotypes, growth stages, tissues, and physical intervals in the genome, as well as Locus IDs, which provide complete information on the HRGs with their annotations and fold changes, along with the experimental material used for the analysis. The up-regulation of genes involved in hormone biosynthesis and signalling, sugar metabolism, carbon fixation, and the ROS pathway were found to be the key mechanisms of enhanced heat tolerance. Integrating variant and expression analysis, the database was used for the dissection of the major effect of QTLs on chromosomes 4, 5, and 9 from the IR64/N22 mapping population. Out of the 18, 54, and 62 genes in these three QTLs, 5, 15, and 12 genes harboured non-synonymous substitutions. Fifty-seven interacting genes of the selected QTLs were identified by a network analysis of the HRGs in the QTL regions. Variant analysis revealed that the proportion of unique amino acid substitutions (between N22/IR64) in the QTL-specific genes was much higher than the common substitutions, i.e., 2.58:0.88 (2.93-fold), compared to the network genes at a 0.88:0.67 (1.313-fold) ratio. An expression analysis of these 89 genes showed 43 DEGs between IR64/N22. By integrating the expression profiles, allelic variations, and the database, four robust candidates (LOC_Os05g43870, LOC_Os09g27830, LOC_Os09g27650, andLOC_Os09g28000) for enhanced heat stress tolerance were identified. The database thus developed in rice can be used in breeding to combat high-temperature stress.

4.
Database (Oxford) ; 20192019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753479

RESUMO

Nearly two decades of revolution in the area of genomics serves as the basis of present-day molecular breeding in major food crops such as rice. Here we report an open source database on two major biotic stresses of rice, named RiceMetaSysB, which provides detailed information about rice blast and bacterial blight (BB) responsive genes (RGs). Meta-analysis of microarray data from different blast- and BB-related experiments across 241 and 186 samples identified 15135 unique genes for blast and 7475 for BB. A total of 9365 and 5375 simple sequence repeats (SSRs) in blast and BB RGs were identified for marker development. Retrieval of candidate genes using different search options like genotypes, tissue, developmental stage of the host, strain, hours/days post-inoculation, physical position and SSR marker information is facilitated in the database. Search options like 'common genes among varieties' and 'strains' have been enabled to identify robust candidate genes. A 2D representation of the data can be used to compare expression profiles across genes, genotypes and strains. To demonstrate the utility of this database, we queried for blast-responsive WRKY genes (fold change ≥5) using their gene IDs. The structural variations in the 12 WRKY genes so identified and their promoter regions were explored in two rice genotypes contrasting for their reaction to blast infection. Expression analysis of these genes in panicle tissue infected with a virulent and an avirulent strain of Magnaporthe oryzae could identify WRKY7, WRKY58, WRKY62, WRKY64 and WRKY76 as potential candidate genes for resistance to panicle blast, as they showed higher expression only in the resistant genotype against the virulent strain. Thus, we demonstrated that RiceMetaSysB can play an important role in providing robust candidate genes for rice blast and BB.


Assuntos
Bases de Dados Genéticas , Resistência à Doença/genética , Genes de Plantas , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Nucleotídeos/genética , Filogenia , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA