Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 117(39): 9738-45, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23581971

RESUMO

Intrapulse quantum cascade (QC) laser spectrometers are able to produce both saturation and molecular alignment of a gas sample owing to the rapid sweep of the radiation through the absorption features. In the QC lasers used to study the (14)N and (15)N isotopologues of the ν4 band of ammonia centered near 1625 cm(-1), the variation of the chirp rate during the scan is very large, from ca. 85 to ca. 15 MHz ns(-1). In the rapid chirp zone the collisional interaction time of the laser radiation with the gas molecules is short, and large rapid passage effects are seen, whereas at the slow chirp end the line shape resembles that of a Doppler broadened line. The total scan range of the QC laser of ca. 10 cm(-1) is sufficient to allow the spectra of both isotopologues to be recorded and the rapid and slow interactions with the laser radiation to be seen. The rapid passage effects are enhanced by the use of an off axis Herriott cell with an effective path length of 62 m, which allows a buildup of polarization to occur. The effective resolution of the chirped QC laser is ca. 0.012 cm(-1) full width at half-maximum in the 1625 cm(-1) region. The results of these experiments are compared with those of other studies of the ν4 band of ammonia carried out using Fourier transform and Laser Stark spectroscopy. They also demonstrate the versatility of the down chirped QC laser for investigating collisional effects in low pressure gases using long absorbing path lengths.

2.
J Chem Phys ; 136(17): 174318, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22583241

RESUMO

A large ac Stark effect has been observed when nitric oxide, at low pressure in a long optical path (100 m) Herriot cell, is subjected to infrared radiation from a rapidly swept, continuous wave infrared quantum cascade laser. As the frequency sweep rate of the laser is increased, an emission signal induced by rapid passage occurs after the laser frequency has passed through the resonance of 1-0 R(11.5)(3/2 /)molecular absorption line. At very high sweep rates a laser field-induced splitting of the absorptive part of the signal is observed, due to the ac Stark effect. This splitting is related to the Autler-Townes mixing of the e, f lambda doublet components of the 1-0 R(11.5)(3/2) transition, which lie under the Doppler broadened envelope.

3.
J Chem Phys ; 136(17): 174317, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22583240

RESUMO

Free induction decay (FID), optical nutation, and rapid passage induced signals in nitrous oxide, under both optically thin and optically thick conditions, have been observed using a rapid current pulse modulation, or chirp, applied to the slow current ramp of a quantum cascade (QC) laser. The variation in optical depth was achieved by increasing the pressure of nitrous oxide in a long path length multipass absorption cell. This allows the variation of optical depth to be achieved over a range of low gas pressures. Since, even at the highest gas pressure used in the cell, the chirp rate of the QC laser is faster than the collisional reorientation time of the molecules, there is minimal collisional damping, allowing a large macroscopic polarization of the molecular dipoles to develop. This is referred to as rapid passage induced polarization. The resultant FID signals are enhanced due to the constructive interference between the field within the gas generated by the slow ramp of the laser (pump), and that of the fast chirp of the laser (probe) signal generated by pulse modulation of the continuously operating QC laser. The FID signals obtained at large optical depth have not been observed previously in the mid-infrared regions, and unusual oscillatory signals have been observed at the highest gas pressures used.

4.
J Chem Phys ; 136(17): 174319, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22583242

RESUMO

Using a low power, rapid (nsec) pulse-modulated quantum cascade (QC) laser, collective coherent effects in the 5 µm spectrum of nitric oxide have been demonstrated by the observation of sub-Doppler hyperfine splitting and also Autler-Townes splitting of Doppler broadened lines. For nitrous oxide, experiments and model calculations have demonstrated that two main effects occur with pulse-modulated (chirped) quantum cascade lasers: free induction decay signals, and signals induced by rapid passage during the laser chirp. In the open shell molecule, NO, in which both Λ-doubling splitting and hyperfine structure occur, laser field-induced coupling between the hyperfine levels of the two Λ-doublet components can induce a large ac Stark effect. This may be observed as sub-Doppler structure, field-induced splittings, or Autler-Townes splitting of a Doppler broadened line. These represent an extension of the types of behaviour observed in the closed shell molecule nitrous oxide, using the same apparatus, when probed with an 8 µm QC laser.

5.
J Chem Phys ; 132(16): 164301, 2010 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-20441269

RESUMO

Intrapulse quantum cascade laser spectrometers are able to produce both saturation and molecular alignment of the gas sample. This is due to the rapid sweep of the radiation through the absorption features. The intrapulse time domain spectra closely resemble those recorded in coherent optical nutation experiments. In the present paper, the frequency down-chirped technique is employed to investigate the nitrous oxide-foreign gas collisions. We have demonstrated that the measurements may be characterized by the induced polarization dominated and collision dominated measurement limits. The first of these is directly related to the time dependence of the long range collision cross sections. Among the collisional partners considered, carbon dioxide shows a very unusual behavior of rapid polarization damping, resulting in the production of symmetrical line shapes at very low gas buffer pressures. In the collision dominated regime, the pressure broadening parameters, which we have derived, are comparable at slow chirp rates, with those derived from other experimental methods. By comparing the pressure broadening coefficients of Ar, N(2), and CO(2) with those of He, making use of the chirp rate independence of the pressure broadening by helium, we have shown that at higher chirp rates there is clear evidence of the chirp-rate dependence of the pressure broadening parameters of N(2) and CO(2).

6.
J Chem Phys ; 132(4): 044316, 2010 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-20113042

RESUMO

Information about intermolecular potentials is usually obtained through the analysis of the absorption line shapes recorded in the frequency domain. This approach is also adopted to study the effects of motional narrowing and speed dependence of the pressure broadening coefficients. On the other hand, time domain measurements are directly related to molecular collisions and are therefore frequently employed to study molecular relaxation rates, as well as the effects of velocity changing collisions and the speed dependence of the absorption cross sections. Intrapulse quantum cascade laser spectrometers are able to produce both saturation and molecular alignment of the gas sample. This is due to the rapid sweep of the radiation through the absorption features. In the present work the frequency down-chirped radiation emitted by an intrapulsed quantum cascade laser operating near 7.8 mum is employed to investigate the collisional relaxation processes, and the collisional narrowing, in the 15(0,15)<--16(1,16) and 15(1,15)<--16(0,16) doublet in the water vapor nu(2) band. The effects of He, Ne, Ar, N(2), and CO(2) as collisional partners are investigated. The experimental results clearly indicate the dependence of the collisional cross sections upon the chirp rate. They also demonstrate that by using different chirp rates it is possible to gain information about the intermolecular processes driving the molecular collisions and the related energy transfer.

7.
Chem Soc Rev ; 34(11): 921-34, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16239994

RESUMO

The Quantum cascade (QC) laser is an entirely new type of semiconductor device in which the laser wavelength depends on the band-gap engineering. It can be made to operate over a much larger range than lead salt lasers, covering significant parts of both the infrared and submillimetre regions, and with higher output power. In this tutorial review we survey some of the applications of these new lasers, which range from trace gas detection for atmospheric or medical purposes to sub-Doppler and time dependent non-linear spectroscopy.


Assuntos
Raios Infravermelhos , Lasers , Óptica e Fotônica , Teoria Quântica , Gases/química , Semicondutores , Sensibilidade e Especificidade , Fatores de Tempo
8.
Appl Opt ; 44(14): 2887-94, 2005 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-15943343

RESUMO

A direct-absorption spectrometer, based on a pulsed, distributed feedback, quantum cascade laser with a 10.26-microm wavelength and an astigmatic Herriott cell with a 66-m path length, has been developed for high-resolution IR spectroscopy. This spectrometer utilizes the intrapulse method, an example of sweep integration, in which the almost linear wavelength up-chirp obtained from a distributed feedback, quantum cascade laser yields a spectral microwindow of as many as 2.5 wave numbers/cm(-1). Within this spectral microwindow, molecular fingerprints can be monitored and recorded in real time. This system allows both the detection of carbon dioxide and ethylene and the real-time observation of the evolution of these gases in the exhaust by-products from several cars.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Monitoramento Ambiental/métodos , Etilenos/análise , Microquímica/métodos , Espectrofotometria Infravermelho/métodos , Emissões de Veículos/análise , Sistemas Computacionais , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Espectrofotometria Infravermelho/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA