Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955375

RESUMO

The aim of this study was the development of a test regime to determine the wear resistance and predict the clinical performance of conventional glass ionomer cement (GIC) restorations in Class I tooth cavities. Cavities were prepared in excised human teeth and restored using three conventional glass ionomer restorative materials: DeltaFil, Fuji IX GP and Ketac Universal. The restored teeth were mechanically and thermally stressed using a chewing simulator with a maximum number of 1,200,000 load cycles. Besides determining the number of cycles achieved, the abrasion volume after termination of the chewing simulation was calculated using µCT images. All teeth restored with DeltaFil reached 1,200,000 cycles without any restoration failure. Only 37.5% of the restorations each with Ketac Universal and Fuji IX GP were able to achieve the maximum cycle number. A significant lower abrasion volume for restorations with DeltaFil compared to Ketac Universal (p = 0.0099) and Fuji IX GP (p = 0.0005) was found. Laboratory chewing simulations are a useful tool to study basic wear mechanisms in a controlled setting with in-vivo related parameters. DeltaFil shows an improved wear resistance compared to other conventional GICs, indicating the high potential of this material for long-lasting Class I restorations.

2.
Front Plant Sci ; 7: 178, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014281

RESUMO

Chloroplasts originated about three billion years ago by endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. During evolution chloroplasts of higher plants established as the site for photosynthesis and thus became the basis for all life dependent on oxygen and carbohydrate supply. To fulfill this task, plastid organelles are loaded with the transition metals iron, copper, and manganese, which due to their redox properties are essential for photosynthetic electron transport. In consequence, chloroplasts for example represent the iron-richest system in plant cells. However, improvement of oxygenic photosynthesis in turn required adaptation of metal transport and homeostasis since metal-catalyzed generation of reactive oxygen species (ROS) causes oxidative damage. This is most acute in chloroplasts, where radicals and transition metals are side by side and ROS-production is a usual feature of photosynthetic electron transport. Thus, on the one hand when bound by proteins, chloroplast-intrinsic metals are a prerequisite for photoautotrophic life, but on the other hand become toxic when present in their highly reactive, radical generating, free ionic forms. In consequence, transport, storage and cofactor-assembly of metal ions in plastids have to be tightly controlled and are crucial throughout plant growth and development. In the recent years, proteins for iron transport have been isolated from chloroplast envelope membranes. Here, we discuss their putative functions and impact on cellular metal homeostasis as well as photosynthetic performance and plant metabolism. We further consider the potential of proteomic analyses to identify new players in the field.

3.
J Exp Bot ; 64(10): 2665-88, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23682113

RESUMO

Iron homeostasis is an important process for flower development and plant fertility. The role of plastids in these processes has been shown to be essential. To document the relationships between plastid iron homeostasis and flower biology further, a global study (transcriptome, proteome, metabolome, and hormone analysis) was performed of Arabidopsis flowers from wild-type and triple atfer1-3-4 ferritin mutant plants grown under iron-sufficient or excess conditions. Some major modifications in specific functional categories were consistently observed at these three omic levels, although no significant overlaps of specific transcripts and proteins were detected. These modifications concerned redox reactions and oxidative stress, as well as amino acid and protein catabolism, this latter point being exemplified by an almost 10-fold increase in urea concentration of atfer1-3-4 flowers from plants grown under iron excess conditions. The mutant background caused alterations in Fe-haem redox proteins located in membranes and in hormone-responsive proteins. Specific effects of excess Fe in the mutant included further changes in these categories, supporting the idea that the mutant is facing a more intense Fe/redox stress than the wild type. The mutation and/or excess Fe had a strong impact at the membrane level, as denoted by the changes in the transporter and lipid metabolism categories. In spite of the large number of genes and proteins responsive to hormones found to be regulated in this study, changes in the hormonal balance were restricted to cytokinins, especially in the mutant plants grown under Fe excess conditions.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ferritinas/genética , Ferro/metabolismo , Metaboloma , Reguladores de Crescimento de Plantas/metabolismo , Proteoma/metabolismo , Transcriptoma , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Eletroforese em Gel Bidimensional , Ferritinas/metabolismo , Flores/química , Flores/genética , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Espectrometria de Massas , Mutação , Proteoma/química , Proteoma/genética
4.
Plant Physiol ; 155(4): 1709-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21343424

RESUMO

The membrane-spanning protein PIC1 (for permease in chloroplasts 1) in Arabidopsis (Arabidopsis thaliana) was previously described to mediate iron transport across the inner envelope membrane of chloroplasts. The albino phenotype of pic1 knockout mutants was reminiscent of iron-deficiency symptoms and characterized by severely impaired plastid development and plant growth. In addition, plants lacking PIC1 showed a striking increase in chloroplast ferritin clusters, which function in protection from oxidative stress by sequestering highly reactive free iron in their spherical protein shell. In contrast, PIC1-overexpressing lines (PIC1ox) in this study rather resembled ferritin loss-of-function plants. PIC1ox plants suffered from oxidative stress and leaf chlorosis, most likely originating from iron overload in chloroplasts. Later during growth, plants were characterized by reduced biomass as well as severely defective flower and seed development. As a result of PIC1 protein increase in the inner envelope membrane of plastids, flower tissue showed elevated levels of iron, while the content of other transition metals (copper, zinc, manganese) remained unchanged. Seeds, however, specifically revealed iron deficiency, suggesting that PIC1 overexpression sequestered iron in flower plastids, thereby becoming unavailable for seed iron loading. In addition, expression of genes associated with metal transport and homeostasis as well as photosynthesis was deregulated in PIC1ox plants. Thus, PIC1 function in plastid iron transport is closely linked to ferritin and plastid iron homeostasis. In consequence, PIC1 is crucial for balancing plant iron metabolism in general, thereby regulating plant growth and in particular fruit development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Transporte de Cátions/metabolismo , Cloroplastos/enzimologia , Ferro/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Clorofila/análise , Cloroplastos/ultraestrutura , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Homeostase , Peróxido de Hidrogênio/análise , Membranas Intracelulares/metabolismo , Deficiências de Ferro , Microscopia Eletrônica de Transmissão , Estresse Oxidativo , Fenótipo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA de Plantas/genética , Sementes/metabolismo
5.
Biol Chem ; 388(9): 879-89, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17696771

RESUMO

Chloroplasts, unique organelles of plants, originated from endosymbiosis of an ancestor of today's cyanobacteria with a mitochondria-containing host cell. It is assumed that the outer envelope membrane, which delimits the chloroplast from the surrounding cytosol, was thus inherited from its Gram-negative bacterial ancestor. This plastid-specific membrane is thus equipped with elements of prokaryotic and eukaryotic origin. In particular, the membrane-intrinsic outer envelope proteins (OEPs) form solute channels with properties reminiscent of porins and channels in the bacterial outer membrane. OEP channels are characterised by distinct specificities for metabolites and a quite peculiar expression pattern in specialised plant organs and plastids, thus disproving the assumption that the outer envelope is a non-specific molecular sieve. The same is true for the outer membrane of Gram-negative bacteria, which functions as a permeability barrier in addition to the cytoplasmic membrane, and embeds different classes of channel pores. The channels of these prokaryotic prototype proteins, ranging from unspecific porins to specific channels to ligand-gated receptors, are exclusively built of beta-barrels. Although most of the OEP channels are formed by beta-strands as well, phylogeny based on sequence homology alone is not feasible. Thus, the comparison of structural and functional properties of chloroplast outer envelope and bacterial outer membrane channels is required to pinpoint the ancestral OEP 'portrait gallery'.


Assuntos
Membrana Celular/metabolismo , Cloroplastos/metabolismo , Cianobactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Membranas Intracelulares/metabolismo , Canais Iônicos/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
6.
Plant Cell ; 19(3): 986-1006, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17337631

RESUMO

In chloroplasts, the transition metals iron and copper play an essential role in photosynthetic electron transport and act as cofactors for superoxide dismutases. Iron is essential for chlorophyll biosynthesis, and ferritin clusters in plastids store iron during germination, development, and iron stress. Thus, plastidic homeostasis of transition metals, in particular of iron, is crucial for chloroplast as well as plant development. However, very little is known about iron uptake by chloroplasts. Arabidopsis thaliana PERMEASE IN CHLOROPLASTS1 (PIC1), identified in a screen for metal transporters in plastids, contains four predicted alpha-helices, is targeted to the inner envelope, and displays homology with cyanobacterial permease-like proteins. Knockout mutants of PIC1 grew only heterotrophically and were characterized by a chlorotic and dwarfish phenotype reminiscent of iron-deficient plants. Ultrastructural analysis of plastids revealed severely impaired chloroplast development and a striking increase in ferritin clusters. Besides upregulation of ferritin, pic1 mutants showed differential regulation of genes and proteins related to iron stress or transport, photosynthesis, and Fe-S cluster biogenesis. Furthermore, PIC1 and its cyanobacterial homolog mediated iron accumulation in an iron uptake-defective yeast mutant. These observations suggest that PIC1 functions in iron transport across the inner envelope of chloroplasts and hence in cellular metal homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cloroplastos/metabolismo , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Alelos , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Cloroplastos/ultraestrutura , Citosol/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Homeostase , Dados de Sequência Molecular , Fotossíntese , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Transporte Proteico , Homologia de Sequência de Aminoácidos , Synechocystis , Leveduras/metabolismo
7.
Plant Physiol Biochem ; 44(5-6): 323-34, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16806954

RESUMO

Catechin and epicatechin biosyntheses were studied of grape (Vitis vinifera L.), apple (Malus x domestica Borkh.) and other crop leaves, since these monomers and the derived proanthocyanidins are important disease resistance factors. Grape and apple leucoanthocyanidin 4-reductase (LAR; EC 1.17.1.3) enzymes were characterized on basis of plant and recombinant enzymes. In case of grape, two LAR cDNAs were cloned by assembling available EST sequences. Grape and apple leaf anthocyanidin reductase (ANR; EC 1.3.1.77) cDNAs were also obtained and the respective plant and recombinant enzymes were characterized. Despite general low substrate specificity, within the respective flavonoid biosyntheses of grape and apple leaves, both enzyme types deliver differently hydroxylated catechins and epicatechins, due to substrate availability in vivo. Furthermore, for LAR enzymes conversion of 3-deoxyleucocyanidin was shown. Beside relevance for plant protection, this restricts the number of possible reaction mechanisms of LAR. ANR enzyme activity was demonstrated for a number of other crop plants and its correlation with (-)-epicatechin and obvious competition with UDP-glycosyl:flavonoid-3-O-glycosyltransferases was considered.


Assuntos
Catequina/biossíntese , Malus/metabolismo , NADH NADPH Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Vitis/metabolismo , Clonagem Molecular , Glucuronosiltransferase/metabolismo , Malus/enzimologia , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Vitis/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA