Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 14(1): 6280, 2024 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491077

RESUMO

Amiodarone repositioning in cancer treatment is promising, however toxicity limits seem to arise, constraining its exploitability. Notably, amiodarone has been investigated for the treatment of ovarian cancer, a tumour known for metastasizing within the peritoneal cavity. This is associated with an increase of fatty acid oxidation, which strongly depends on CPT1A, a transport protein which has been found overexpressed in ovarian cancer. Amiodarone is an inhibitor of CPT1A but its role still has to be explored. Therefore, in the present study, amiodarone was tested on ovarian cancer cell lines with a focus on lipid alteration, confirming its activity. Moreover, considering that drug delivery systems could lower drug side effects, microfluidics was employed for the development of drug delivery systems of amiodarone obtaining simultaneously liposomes with a high payload and amiodarone particles. Prior to amiodarone loading, microfluidics production was optimized in term of temperature and flow rate ratio. Moreover, stability over time of particles was evaluated. In vitro tests confirmed the efficacy of the drug delivery systems.


Assuntos
Amiodarona , Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Amiodarona/farmacologia , Amiodarona/uso terapêutico , Reposicionamento de Medicamentos , Microfluídica , Lipossomos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia
2.
Gastroenterology ; 166(5): 787-801.e11, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38244726

RESUMO

BACKGROUND & AIMS: Lynch syndrome (LS) carriers develop mismatch repair-deficient neoplasia with high neoantigen (neoAg) rates. No detailed information on targetable neoAgs from LS precancers exists, which is crucial for vaccine development and immune-interception strategies. We report a focused somatic mutation and frameshift-neoAg landscape of microsatellite loci from colorectal polyps without malignant potential (PWOMP), precancers, and early-stage cancers in LS carriers. METHODS: We generated paired whole-exome and transcriptomic sequencing data from 8 colorectal PWOMP, 41 precancers, 8 advanced precancers, and 12 early-stage cancers of 43 LS carriers. A computational pipeline was developed to predict, rank, and prioritize the top 100 detected mutated neoAgs that were validated in vitro using ELISpot and tetramer assays. RESULTS: Mutation calling revealed >10 mut/Mb in 83% of cancers, 63% of advanced precancers, and 20% of precancers. Cancers displayed an average of 616 MHC-I neoAgs/sample, 294 in advanced precancers, and 107 in precancers. No neoAgs were detected in PWOMP. A total of 65% of our top 100 predicted neoAgs were immunogenic in vitro, and were present in 92% of cancers, 50% of advanced precancers, and 29% of precancers. We observed increased levels of naïve CD8+ and memory CD4+ T cells in mismatch repair-deficient cancers and precancers via transcriptomics analysis. CONCLUSIONS: Shared frameshift-neoAgs are generated within unstable microsatellite loci at initial stages of LS carcinogenesis and can induce T-cell responses, generating opportunities for vaccine development, targeting LS precancers and early-stage cancers.


Assuntos
Antígenos de Neoplasias , Neoplasias Colorretais Hereditárias sem Polipose , Sequenciamento do Exoma , Mutação da Fase de Leitura , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/imunologia , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Feminino , Mutação , Masculino , Pessoa de Meia-Idade , Reparo de Erro de Pareamento de DNA/genética , Repetições de Microssatélites , Instabilidade de Microssatélites , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/prevenção & controle , Adulto , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico
3.
Mol Aspects Med ; 93: 101204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478804

RESUMO

Lynch Syndrome (LS) is one of the most common hereditary cancer syndromes, and is caused by mutations in one of the four DNA mismatch repair (MMR) genes, namely MLH1, MSH2, MSH6 and PMS2. Tumors developed by LS carriers display high levels of microsatellite instability, which leads to the accumulation of large numbers of mutations, among which frameshift insertion/deletions (indels) within microsatellite (MS) loci are the most common. As a result, MMR-deficient (MMRd) cells generate increased rates of tumor-specific neoantigens (neoAgs) that can be recognized by the immune system to activate cancer cell killing. In this context, LS is an ideal disease to leverage immune-interception strategies. Therefore, the identification of these neoAgs is an ongoing effort for the development of LS cancer preventive vaccines. In this review, we summarize the computational methods used for in silico neoAg prediction, including their challenges, and the experimental techniques used for in vitro validation of their immunogenicity. In addition, we outline results from past and on-going vaccine clinical trials and highlight avenues for improvement and future directions.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose , Humanos , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/prevenção & controle , Proteínas de Ligação a DNA/genética , Proteína 1 Homóloga a MutL/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Desenvolvimento de Vacinas
4.
Int Immunopharmacol ; 107: 108684, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35272171

RESUMO

Cancer stem cells (CSCs), which represent the root cause of resistance to conventional treatments, recurrence, and metastasis, constitute the critical point of failure in cancer treatments. Targeting CSCs with dendritic cell (DC)-based vaccines have been an effective strategy, but sialic acids on the surface of DCs limit the interaction with loaded antigens. We hypothesized that removal of sialic acid moieties on immature DCs (iDCs) could significantly affect DC-CSC-antigen loading, thereby leading to DC maturation and improving immune recognition and activity. The lysate of CD44+/CD24-/low breast CSCs (BCSCs) was pulsed with sialidase-treated DCs to obtain mature dendritic cells (mDCs). The roles of cytoskeletal elements in antigen uptake and dendritic cell maturation were determined by immunofluorescence staining, flow cytometry, and cytokine measurement, respectively. To test the efficacy of the vaccine in vivo, CSCs tumor-bearing mice were immunized with iDC or mDC. Pulsing DCs with antigen increased the expression levels of actin, gelsolin, talin, WASp, and Arp2, especially in podosome-like regions. Compared with iDCs, mDCs expressed high levels of CD40, CD80, CD86 costimulatory molecules and increased IL-12 production. Vaccination with mDC: i) increased CD8+ and CD4 + T-cell numbers, ii) prevented tumor growth with anti-mitotic activity and apoptotic induction, iii) suppressed metastasis by decreasing Snail, Slug, and Twist expressions. This study reveals for the first time that sialic acid removal and loading with CSC antigens induces significant molecular, morphological, and functional changes in DCs and that this new DC identity may be considered for future combined immunotherapy strategies against breast tumors.


Assuntos
Vacinas Anticâncer , Neoplasias , Animais , Vacinas Anticâncer/uso terapêutico , Células Dendríticas , Camundongos , Ácido N-Acetilneuramínico , Células-Tronco Neoplásicas
5.
Cancers (Basel) ; 13(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578886

RESUMO

Organ-like cell clusters, so-called organoids, which exhibit self-organized and similar organ functionality as the tissue of origin, have provided a whole new level of bioinspiration for ex vivo systems. Microfluidic organoid or organs-on-a-chip platforms are a new group of micro-engineered promising models that recapitulate 3D tissue structure and physiology and combines several advantages of current in vivo and in vitro models. Microfluidics technology is used in numerous applications since it allows us to control and manipulate fluid flows with a high degree of accuracy. This system is an emerging tool for understanding disease development and progression, especially for personalized therapeutic strategies for cancer treatment, which provide well-grounded, cost-effective, powerful, fast, and reproducible results. In this review, we highlight how the organoid-on-a-chip models have improved the potential of efficiency and reproducibility of organoid cultures. More widely, we discuss current challenges and development on organoid culture systems together with microfluidic approaches and their limitations. Finally, we describe the recent progress and potential utilization in the organs-on-a-chip practice.

6.
Balkan Med J ; 38(1): 34-42, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32936075

RESUMO

BACKGROUND: The hallucinogenic tryptamine analog 5-methoxy-N-methyl-N-isopropyltryptamine (5-MeO-MiPT) causes social problems worldwide. There are several studies on the metabolism; however, not more studies were found in the literature on acute toxicity. AIMS: To report the acute toxicity of 5-MeO-MiPT in mice, followed by quantitative toxicological analysis of blood and organs, hystotoxicological and immunohistochemical analysis of tissues and cells. STUDY DESIGN: Animal experiment Methods: In vivo experiments were performed using CD1 adult female mice (n=26). Animals were caged in 4 groups randomly. First group was a control (n=3). Second group was vehicle control (n=3) and injected 150 µL of blank solution (50% dimethyl sulfoxide in saline /0.9% of NaCl). While for acute toxicity experiments, 5-MeO-MiPT was added to a blank solution in order to obtain a dose of 0.27 mg/kg in 150 µL injection (n=10) and the last group were injected 2.7 mg/kg 5-MeO-MiPT in a 150 µL injection (n=10). Quantitative toxicological analysis, hystotoxicological and immunohistochemical analysis were performed. RESULTS: In the toxicological analysis, 5-MeO-MiPT was found negative in biological samples which were control, vehicle control, and 0.27 mg/kg dose mice groups. 5-MeO-MiPT was found 2.7-13.4 ng/mL in blood, 11-29 ng/g in kidney, 15.2-108.3 ng/g in liver, and 1.5-40.6 ng/g in the brain in 2,7 mg/kg injected group. In a low dose of the 5-MeO-MiPT liver section, compared with normal tissues, the difference in staining was statistically significant (p<0.0001). In high-dose of 5-MeO-MiPT, H-score showed that the increase in the number of Caspase-3 positive cells was significant compared to the control (p<0.05). In high-dose of 5-MeO-MiPT, intense Caspase-3 immunoreactivity was observed and the increase in the number of Caspase-3 positive cells compared to the control was statistically significant (p<0.05). In brain section, the statistics of the results obtained from the H-score showed that the increase in the number of Caspase-3 positive cells was significant compared to the control (p=0.0183). In vehicle control liver section, there were few Caspase-8 positive cells characterized by a light brown appearance (p=0.0117). In the high-dose 5-MeO-MiPT group, the numbers of positive cells at low and high doses of 5-MeO-MiPT group were statistically significant compared to the control (p<0.05). In the high-dose 5-MeO-MiPT group, Caspase-8 immunoreactivity was detected in the glomerular structures. Compared to control, the increase in Caspase-8 immunoreactivity was found to be statistically significant (p<0.05). CONCLUSION: Low-dose 5-MeO-MiPT did not cause any serious histopathological effects on the liver, kidney, and brain. High doses induce apoptotic cell death through caspase activity.


Assuntos
Triptaminas/efeitos adversos , Análise de Variância , Animais , Cérebro/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Camundongos , Triptaminas/toxicidade
7.
Cancers (Basel) ; 12(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126572

RESUMO

Nanosized extracellular vesicles (EVs) with dimensions ranging from 100 to 1000 nm are continuously secreted from different cells in their extracellular environment. They are able to encapsulate and transfer various biomolecules, such as nucleic acids, proteins, and lipids, that play an essential role in cell‒cell communication, reflecting a novel method of extracellular cross-talk. Since EVs are present in large amounts in most bodily fluids, challengeable hypotheses are analyzed to unlock their potential roles. Here, we review EVs by discussing their specific characteristics (structure, formation, composition, and isolation methods), focusing on their key role in cell biology. Furthermore, this review will summarize the biomedical applications of EVs, in particular those between 30 and 150 nm (like exosomes), as next-generation diagnostic tools in liquid biopsy for cancer and as novel drug delivery vehicles.

8.
Folia Histochem Cytobiol ; 55(3): 140-148, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28994095

RESUMO

INTRODUCTION: Sunitinib is an oral inhibitor of vascular endothelial growth factor that is used to treat a variety of cancer. There are limited data regarding the effect of sunitinib on diabetes. In the liver, Notch signaling plays an important role in liver tissue development and homeostasis and its dysfunction is associated with liver pathol-ogies. The aim of the present study is to investigate the effects of sunitinib on streptozotocin (STZ)-induced diabetic liver in mice models. MATERIAL AND METHODS: An experimental diabetes mellitus (DM) model was created in 28 male CD-1 mice. Twenty-eight male CD-1 mice divided in four groups (n = 7 each) were used; control mice (C), control mice treated with sunitinib (C + S), diabetic mice (DM), and diabetic mice treated with sunitinib (DM + S) for four weeks. The histopathological changes in the liver were examined by histochemistry and immunohistochemistry. Immunoreactivity of Notch1, Jagged1, DLL-1 and VEGF were evaluated in control and diabetic mice after sunitinib treatment. RESULTS: The significant morphological changes in the liver were mostly seen in hepatocytes that were hyper-trophied in the DM mice, with an increased amount of eosinophilic granules; moreover, some hepatocytes contained empty vacuole-like structures. The livers of the DM mice revealed increased deposition of collagen fibers. After sunitinib treatment the hepatocytes and hepatic lobules had almost similar morphology to control mice. The immunoreactivities of Notch1, Jagged1, DLL-1 and VEGF in hepatocytes were significantly lower in the DM group when compared with the C, DM + S and C + S group treated with sunitinib. CONCLUSIONS: These results suggest that sunitinib effectively protects the liver from diabetes-induced damage through the inhibition of the Notch pathway.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Indóis/farmacologia , Hepatopatias/prevenção & controle , Fígado/efeitos dos fármacos , Pirróis/farmacologia , Receptor Notch1/genética , Receptor Notch1/metabolismo , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Imuno-Histoquímica , Indóis/uso terapêutico , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Fígado/lesões , Fígado/patologia , Masculino , Camundongos , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sunitinibe
9.
Oncol Lett ; 14(6): 6433-6440, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29422957

RESUMO

Flavopiridol is a synthetically produced flavonoid that potently inhibits the proliferation of human tumor cell lines. Flavopiridol exerts strong antitumor activity via several mechanisms, including the induction of cell cycle arrest and apoptosis, and the modulation of transcriptional regulation. The aim of the present study was to determine the effect of flavopiridol on a subpopulation of cluster of differentiation (CD)44+/CD24- human breast cancer MCF7 stem cells. The CD44+/CD24- cells were isolated from the MCF7 cell line by fluorescence-activated cell sorting and treated with 100, 300, 500, 750 and 1,000 nM flavopiridol for 24, 48 and 72 h. Cell viability and proliferation assays were performed to determine the inhibitory effect of flavopiridol. Gene expression profiling was analyzed using Illumina Human HT-12 v4 Expression BeadChip microarray. According to the results, the half maximal inhibitory concentration (IC50) value of flavopiridol was 500 nM in monolayer cells. Flavopiridol induced growth inhibition and cytotoxicity in breast cancer stem cells (BCSCs) at the IC50 dose. The present study revealed several differentially regulated genes between flavopiridol-treated and untreated cells. The result of the pathway analysis revealed that flavopiridol serves an important role in translation, the ribosome biogenesis pathway, oxidative phosphorylation, the electron transport chain pathway, carbon metabolism and cell cycle. A notable result from the present study is that ribosome-associated gene expression is significantly affected by flavopiridol treatment. The data of the present study indicate that flavopiridol exhibits antitumor activity against CD44+/CD24- MCF7 BCSCs through different mechanisms, mainly by inhibiting translation and the ribosome biogenesis pathway, and could be an effective chemotherapeutic molecule to target and kill BCSCs.

10.
J BUON ; 20(5): 1250-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26537072

RESUMO

PURPOSE: JAK/STAT is an evolutionarily conserved pathway and very important for second messenger system. This pathway is important in malignant transformation and accumulated evidence indicates that this pathway is involved in tumorigenesis and progression of several cancers. It was possible to assume that activation of JAK/STAT pathway is associated with increase in the expressions of ICAM/1 and VCAM-1. In this study we hypothesized that when cells were maintained as spheroids or monolayers, the structure of cancer stem cells (CSCs) could show differentiation when compared with non-CSCs. METHODS: DU-145 human prostate cancer cells were cultured using the Ege University molecular embryology laboratory medium supplemented with 10% fetal bovine serum. Clusters of differentiation 133 (CD133)(+high)/CD44(+high) prostate CSCs were isolated from the DU145 cell line by using BD FACSAria. CD133//CD44+ CSCs were cultured until confluent with 3% noble agar. The expression of these proteins in CSCs and non-CSCs was analyzed by immunohistochemistry. RESULTS: Different expression profiles were observed in the conventional two-dimensional (2D) and three-dimensional (3D) experimental model system when CSCs and non-CSCs were compared. Human prostate CSCs exhibited intense ICAM-1 and VCAM-1 immunoreaction when compared with non-CSCs. These findings were supported by the fact that VCAM-1 on the surface of cancer cells binds to its counterreceptor, the α4ß1 integrin (also known as very-late antigen, VLA-4), on metastasis-associated macrophages, triggering VCAM-1-mediated activation of the phosphoinositide 3-kinase growth and survival pathway in cancer cells. CONCLUSIONS: The results of this study showed that changes in JAK/STAT pathway are related with adhesion molecules and could affect cancer progression.


Assuntos
Molécula 1 de Adesão Intercelular/fisiologia , Janus Quinases/fisiologia , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Fatores de Transcrição STAT/fisiologia , Transdução de Sinais/fisiologia , Esferoides Celulares/patologia , Molécula 1 de Adesão de Célula Vascular/fisiologia , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Molécula 1 de Adesão Intercelular/análise , Masculino , Molécula 1 de Adesão de Célula Vascular/análise
11.
PLoS One ; 10(10): e0141090, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26485709

RESUMO

Trabectedin (Yondelis, ET-743) is a marine-derived tetrahydroisoquinoline alkaloid. It is originally derived from the Caribbean marine tunicate Ecteinascidia turbinata and currently produced synthetically. Trabectedin is active against a variety of tumor cell lines growing in culture. The present study focused on the effect of trabectedin in cell proliferation, cell cycle progression, apoptosis and spheroid formation in prostate cancer stem cells (CSCs). Cluster of differentiation (CD) 133+high/CD44+high prostate CSCs were isolated from the DU145 and PC-3 human prostate cancer cell line through flow cytometry. We studied the growth-inhibitory effects of trabectedin and its molecular mechanisms on human prostate CSCs and non-CSCs. DU-145 and PC-3 CSCs were treated with 0.1, 1, 10 and 100 nM trabectedin for 24, 48 and 72 h and the growth inhibition rates were examined using the sphere-forming assay. Annexin-V assay and immunofluorescence analyses were performed for the detection of the cell death. Concentration-dependent effects of trabectedin on the cell cycle were also evaluated. The cells were exposed to the different doses of trabectedin for 24, 48 and 72 h to evaluate the effect of trabectedin on the number and diameter of spheroids. According to the results, trabectedin induced cytotoxicity and apoptosis at the IC50 dose, resulting in a significant increase expression of caspase-3, caspase-8, caspase-9, p53 and decrease expression of bcl-2 in dose-dependent manner. Cell cycle analyses revealed that trabectedin induces dose-dependent G2/M-phase cell cycle arrest, particularly at high-dose treatments. Three-dimensional culture studies showed that trabectedin reduced the number and diameter of spheroids of DU145 and PC3 CSCs. Furthermore, we have found that trabectedin disrupted cell-cell interactions via E-cadherin in prostasphere of DU-145 and PC-3 CSCs. Our results showed that trabectedin inhibits cellular proliferation and accelerates apoptotic events in prostate CSCs; and may be a potential effective therapeutic agent against prostate cancer.


Assuntos
Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Caspases/metabolismo , Divisão Celular/efeitos dos fármacos , Dioxóis/farmacologia , Fase G2/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Tetra-Hidroisoquinolinas/farmacologia , Antineoplásicos Alquilantes/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaio de Unidades Formadoras de Colônias , Imunofluorescência , Humanos , Masculino , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Trabectedina , Células Tumorais Cultivadas
12.
Int J Mol Med ; 34(5): 1249-56, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25216351

RESUMO

Flavopiridol is a flavone that inhibits several cyclin­dependent kinases and exhibits potent growth­inhibitory activity, apoptosis and G1­phase arrest in a number of human tumor cell lines. Flavopiridol is currently undergoing investigation in human clinical trials. The present study focused on the effect of flavopiridol in cell proliferation, cell cycle progression and apoptosis in prostate cancer stem cells (CSCs). Therefore, cluster of differentiation 133 (CD133)(+high)/CD44(+high) prostate CSCs were isolated from the DU145 human prostate cancer cell line. The cells were treated with flavopiridol in a dose­ and time­dependent manner to determine the inhibitory effect. Cell viability and proliferation were analyzed and the efficiency of flavopiridol was assessed using the sphere­forming assay. Flavopiridol was applied to monolayer cultures of CD133(high)/CD44(high) human prostate CSCs at the following final concentrations: 100, 300, 500 and 1000 nM . The cultures were incubated for 24, 48 and 72 h. The half maximal inhibitory concentration (IC(50)) value of the drug was determined as 500 nM for monolayer cells. Dead cells were analyzed prior and subsequent to exposure to increasing flavopiridol doses. Annexin­V and immunofluorescence analyses were performed for the evaluation of apoptotic pathways. According to the results, flavopiridol treatment caused significant growth inhibition at 500 and 1000 nM when compared to the control at 24 h. G(0)/G(1) analysis showed a statistically significant difference between 100 and 500 nM (P<0.005), 100 and 1000 nM (P<0.001), 300 and 1000 nM (P<0.001), and 500 and 1000 nM (P<0.001). Flavopiridol also significantly influenced the cells in the G(2)/M phase, particularly at high­dose treatments. Flavopiridol induced growth inhibition and apoptosis at the IC(50) dose (500 nM), resulting in a significant increase in immunofluorescence staining of caspase­3, caspase­8 and p53. In conclusion, the present results indicated that flavopiridol could be a useful therapeutic agent for prostate CSCs by inhibiting tumor growth and malignant progression, and inducing apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Flavonoides/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Piperidinas/farmacologia , Próstata/efeitos dos fármacos , Antígeno AC133 , Antígenos CD/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glicoproteínas/metabolismo , Humanos , Concentração Inibidora 50 , Masculino , Peptídeos/metabolismo , Próstata/citologia , Neoplasias da Próstata/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA