Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 11021, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773362

RESUMO

The current study assesses the prospect of using R. Communis seed oil as a substitute fuel for diesel engines. Biodiesel is prepared from the R. Communis plant seed oil by a single-step base catalytic transesterification procedure. The investigation deals with the Physico-chemical characteristics of R. Communis biodiesel and has been associated with the base diesel. It has been perceived that the characteristics of biodiesel are well-matched with the base diesel under the ASTM D6751 limits correspondingly. R. Communis biodiesel is blended in different proportions with base diesel such as D10, D20, D30, D40, D50 and D100 and is tested in a Kirloskar TV1 single-cylinder, 4 blows DI engine under altered loading conditions. Outcomes demonstrate that BTE and BSFC for D10 as well as D20 are similar to base diesel. BSFC indicates that the precise BSFC of base diesel, D10, D20, D30, D40 and D50 was 0.87, 1.70, 2.60, 3.0, 3.4, and 3.5 kg/kW-hr, respectively. The extreme BTE at full load condition for base diesel, D10, D20, D30, D40, D50 and D100 are 28.2%, 28.1%, 27.9%, 25.5%, 24.1%, and 23.6% , respectively. In the case of engine emissions, R. Communis biodiesel blends provided an average decrease in hydrocarbon (HC), Carbon-monoxide (CO) and carbon dioxide (CO2) associated with base diesel. Nevertheless, R. Communis biodiesel blends discharged high stages of nitrogen oxide (NOx) compares to base diesel. Base diesel, D10, D20, D30, D40, D50, and D100 had UBHC emissions of 45 ppm, 40 ppm, 44 ppm, 46 ppm, 41 ppm, and 43 ppm, respectively. The reduction in CO emissions for D10, D20, D30, D40, D50 and D100 are 0.13%, 0.14%, 0.17%, 0.18% and 0.21% respectively. The dissimilarity in NOx attentiveness within brake powers for D10, D20, D30, D40, and D50 and base diesel are 50-ppm, 100 ppm, 150 ppm, 250 ppm, 350 ppm, and 500 ppm, respectively. The dissimilarity of CO2 emanation with reverence to break powers for the base-diesel, D10, D20, D30, D40, D50, and D100 are 4.8%, 4.9%, 4.8%, 4.56%, 4.9% and 5.1%, respectively. The present research provides a way for renewable petrol blends to substitute diesel for powering diesel engines in that way dropping the reliance on fossil fuels.


Assuntos
Biocombustíveis , Emissões de Veículos , Biocombustíveis/análise , Monóxido de Carbono/análise , Gasolina , Óxido Nítrico , Óxidos de Nitrogênio/análise , Extratos Vegetais , Óleos de Plantas , Ricinus , Emissões de Veículos/análise
2.
Bioinorg Chem Appl ; 2022: 1003803, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069713

RESUMO

The influence of bath temperature on nano-manufactured PbSe (lead selenide) films was successfully generated by utilizing CBD on the acid solution's metal surface tool. Pb (NO3)2 was employed as a lead ion source as a precursor, while Na2O4Se was used as a selenide ion source. The XRD characterization revealed that the prepared samples are the property of crystalline structure (111), (101), (100), and (110) Miller indices. The scanning electron microscope indicated that the particles have a rock-like shape. There was a decrement of energy bandgap that is from 2.4 eV to 1.2 eV with increasing temperature 20°C-85°C. Thin films prepared at 85°C revealed the best polycrystal structure as well as homogeneously dispersed on the substrate at superior particle scales. The photoluminescence spectrophotometer witnessed that as the temperature of the solution bath increases from 20°C to 85°C, the average strength of PL emission of the film decreases. The maximum photoluminescence strength predominantly exists at high temperatures because of self-trapped exciton recombination, formed from O2 vacancy and particle size what we call defect centres, for the deposited thin films at 45°C and 85°C. Therefore, the finest solution temperature is 85°C.

3.
Int J Biol Macromol ; 104(Pt B): 1807-1812, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28668610

RESUMO

Curcumin and Rutin are natural polyphenolic molecules exhibits several pharmacological actives like antibacterial, anticancer, antioxidant, chemo-preventive and anti-inflammatory properties. However till date, no studies have been reported on their combination efficacy, especially in treating multi-drug resistance of cancers because of their poor solubility and bioavailability. Hence in the present study, an attempt has been made to load both these drugs into a single nanoparticlulate system to enhance their bioavailability and efficacy. This novel formulation was prepared by solvent evaporation technique and was evaluated for particle size and shape using Zeta Sizer, Scanning Electron Microscopy (SEM) and Fourier Transform Infra Red (FT-IR) Spectroscopy. The optimized formulation was further subjected to in vitro and in vivo evaluations. The prepared nanoparticles were in the size range of 25-100nm and the release profile was found to be Non -Fickian transport. In-vivo pharmacokinetic studies were carried in rabbits and the pharmacokinetic profile was studied. The results indicate that oral bioavailability of Curcumin and Rutin has been increased to 3.06 and 4.24 folds respectively when compared to their pure drugs. This data suggest that the present novel nanoparticles loaded with these combinational drugs may have better therapeutic potential in treating drug resistant cancers.


Assuntos
Quitosana/química , Curcumina/química , Portadores de Fármacos , Composição de Medicamentos , Nanopartículas/química , Rutina/química , Animais , Materiais Biocompatíveis/química , Curcumina/administração & dosagem , Curcumina/farmacocinética , Liberação Controlada de Fármacos , Teste de Materiais , Nanopartículas/ultraestrutura , Tamanho da Partícula , Coelhos , Rutina/administração & dosagem , Rutina/farmacocinética , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA