Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biomed Sci ; 8(1): 64-75, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23675258

RESUMO

We have studied edible algae that have the potential to down-regulate blood glucose. In Japan, Ecklonia species have been believed to improve the circulation of blood. In this study, we used leptin receptor deficient type 2 diabetes model mice (db/db) and prediabetic C57BL/6J mice. We also focused on the role of IFN-γ in the control of blood levels of triacylglycerol and glucose, because it is reportedly engaged in the regulation of energy consumption together with leptin. We report that gametophytes of Ecklonia kurome down-regulate the blood level of glucose and serum level of triacylglycerol in db/db. We also report that gametophytes of Ecklonia kurome down-regulate the level of glucose but not the level of triacylglycerol in prediabetic C57BL/6J mice induced by a high fat diet. They increased the level of triacylglycerol compared to that of control group in C57BL/6J, but not in IFN-γ KO mice. Gametophytes of Ecklonia kurome were administered orally to prediabetic C57BL/6J and IFN-γ KO mice and oral glucose tolerance tests were performed to evaluate the effects of algae. During the administration of the normal diet, we found a higher level of blood glucose in a glucose tolerance test of IFN-γ KO mice compared with that of C57BL/6J. Although a high fat diet induced a higher level of blood glucose compared with a normal diet group in a glucose tolerance test of C57BL/6J mice, this effect of high fat diet was not observed clearly at first but appeared three hours after glucose administration in IFN-γ KO mice. Gametophytes of Ecklonia kurome down-regulated the level of blood glucose in both C57BL/6J and IFN-γ KO mice, when administered a normal diet after making them prediabetic. These results suggest that Ecklonia kurome are effective to down-regulate the blood glucose and IFN-γ is involved in the regulation of blood glucose and triacylglycerol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA