RESUMO
BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare genetic disorder caused by insufficient mucociliary clearance leading to chronic airway infections. The diagnostic guideline of the European Respiratory Society (ERS) primarily recommends the evaluation of the clinical history (e. g. by the PICADAR prediction tool), nasal nitric oxide (nNO) production rate measurements, high-speed videomicroscopy analysis (HSVMA) of ciliary beating, and the assessment of ciliary axonemes via transmission electron microscopy (TEM). Genetic testing can be implemented as a last step. QUESTION: In this study, we aimed to characterise PCD with a defective C1d projection of the ciliary central apparatus (CA) and evaluated the applicability of the ERS diagnostic guideline to this PCD type. METHODS: Using a high-throughput sequencing approach of genes encoding C1d components, we identified pathogenic variants in the novel PCD genes CFAP46 and CFAP54, and the known PCD gene CFAP221. To fully assess this PCD type, we also analysed individuals with pathogenic variants in CFAP74. RESULTS: Careful evaluation revealed that C1d-defective PCD is associated with normal situs composition, normal nNO-production rates, normal ciliary ultrastructure by TEM, and normal ciliary beating by HSVMA. Despite chronic respiratory disease, PICADAR does not reliably detect this PCD type. However, we could show by in-vitro ciliary transport assays that affected individuals exhibit insufficient ciliary clearance. CONCLUSIONS: Overall, this study extends the spectrum of PCD genes and highlights that C1d-defective PCD individuals elude diagnosis in the current diagnostic algorithm. To enable diagnosis, genetic testing should be prioritised in future diagnostic guidelines.
RESUMO
BACKGROUND: Primary ciliary dyskinesia is a genetic disorder caused by aberrant motile cilia function that results in defective ciliary airway clearance and subsequently leads to recurrent airway infections and bronchiectasis. We aimed to determine: how many functional multiciliated airway cells are sufficient to maintain ciliary airway clearance? METHODS: To answer this question we exploited the molecular defects of the X-linked recessive primary ciliary dyskinesia variant caused by pathogenic variants in DNAAF6 (PIH1D3), characterised by immotile cilia in affected males. We carefully analysed the clinical phenotype and molecular defect (using immunofluorescence and transmission electron microscopy) and performed in vitro studies (particle tracking in air-liquid interface cultures) and in vivo studies (radiolabelled tracer studies) to assess ciliary clearance of respiratory cells from female individuals with heterozygous and male individuals with hemizygous pathogenic DNAAF6 variants. RESULTS: Primary ciliary dyskinesia male individuals with hemizygous pathogenic DNAAF6 variants displayed exclusively immotile cilia, absence of ciliary clearance and severe primary ciliary dyskinesia symptoms. Owing to random or skewed X-chromosome inactivation in six female carriers with heterozygous pathogenic DNAAF6 variants, 54.3±10% (range 38-70%) of multiciliated cells were defective. Nevertheless, in vitro and in vivo assessment of the ciliary airway clearance was normal or slightly abnormal. Consistently, heterozygous female individuals showed no or only mild respiratory symptoms. CONCLUSIONS: Our findings indicate that having 30-62% of multiciliated respiratory cells functioning can generate either normal or slightly reduced ciliary clearance. Because heterozygous female carriers displayed either no or subtle respiratory symptoms, complete correction of 30% of cells by precision medicine could improve ciliary airway clearance in individuals with primary ciliary dyskinesia, as well as clinical symptoms.
Assuntos
Cílios , Humanos , Feminino , Masculino , Adulto , Síndrome de Kartagener/genética , Síndrome de Kartagener/fisiopatologia , Adolescente , Adulto Jovem , Criança , Depuração Mucociliar , Pessoa de Meia-Idade , Heterozigoto , Fenótipo , Bronquiectasia , Pré-EscolarRESUMO
Disease-causing bi-allelic DNA variants in CCDC39 and CCDC40 are frequent causes of the hereditary disorder of primary ciliary dyskinesia (PCD). The encoded proteins form a molecular ruler complex, crucial for maintaining the 96 nm repeat units along the ciliary axonemes. Defects of those proteins cause a stiff, rapid, and flickery ciliary beating pattern, recurrent respiratory infections, axonemal disorganization, and abnormal assembly of GAS8, CCDC39, and DNALI1. We performed molecular characterization of the defects in the 96 nm axonemal ruler due to disease-causing variants in CCDC39 and CCDC40 and analyzed the effect on additional axonemal components. We identified a cohort of 51 individuals with disease-causing variants in CCDC39 and CCDC40 via next-generation sequencing techniques and demonstrated that the IDA heavy chains DNAH1, DNAH6, and DNAH7 are conspicuously absent within the respiratory ciliary axonemes by immunofluorescence analyses. Hence, we show for the first time that the centrin2 (CETN2) containing IDAs are also affected. These findings underscore the crucial role of CCDC39 and CCDC40 in the assembly and function of IDAs in human respiratory cilia. Thus, our data improve the diagnostics of axonemal ruler defects by further characterizing the associated molecular IDA defects.
Assuntos
Axonema , Humanos , Masculino , Dineínas do Axonema/metabolismo , Dineínas do Axonema/genética , Axonema/metabolismo , Cílios/metabolismo , Cílios/patologia , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Proteínas do Citoesqueleto , Dineínas/metabolismo , Dineínas/genética , Mutação/genética , ProteínasRESUMO
Defects in motile cilia, termed motile ciliopathies, result in clinical manifestations affecting the respiratory and reproductive system, as well as laterality defects and hydrocephalus. We previously defined biallelic MNS1 variants causing situs inversus and male infertility, mirroring the findings in Mns1-/- mice. Here, we present clinical and genomic findings in five newly identified individuals from four unrelated families affected by MNS1-related disorder. Ciliopathy panel testing and whole exome sequencing identified one previously reported and two novel MNS1 variants extending the genotypic spectrum of disease. A broad spectrum of laterality defects including situs inversus totalis and heterotaxia was confirmed. Interestingly, a single affected six-year-old girl homozygous for an MNS1 nonsense variant presented with a history of neonatal respiratory distress syndrome, recurrent respiratory tract infections, chronic rhinitis, and wet cough. Accordingly, immunofluorescence analysis showed the absence of MNS1 from the respiratory epithelial cells of this individual. Two other individuals with hypomorphic variants showed laterality defects and mild respiratory phenotype. This study represents the first observation of heterotaxia and respiratory disease in individuals with biallelic MNS1 variants, an important extension of the phenotype associated with MNS1-related motile ciliopathy disorder.
Assuntos
Alelos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Cílios/patologia , Cílios/genética , Ciliopatias/genética , Ciliopatias/patologia , Linhagem , Fenótipo , Lactente , AdolescenteRESUMO
BACKGROUND: Primary ciliary dyskinesia (PCD) represents a group of rare hereditary disorders characterised by deficient ciliary airway clearance that can be associated with laterality defects. We aimed to describe the underlying gene defects, geographical differences in genotypes and their relationship to diagnostic findings and clinical phenotypes. METHODS: Genetic variants and clinical findings (age, sex, body mass index, laterality defects, forced expiratory volume in 1â s (FEV1)) were collected from 19 countries using the European Reference Network's ERN-LUNG international PCD Registry. Genetic data were evaluated according to American College of Medical Genetics and Genomics guidelines. We assessed regional distribution of implicated genes and genetic variants as well as genotype correlations with laterality defects and FEV1. RESULTS: The study included 1236 individuals carrying 908 distinct pathogenic DNA variants in 46 PCD genes. We found considerable variation in the distribution of PCD genotypes across countries due to the presence of distinct founder variants. The prevalence of PCD genotypes associated with pathognomonic ultrastructural defects (mean 72%, range 47-100%) and laterality defects (mean 42%, range 28-69%) varied widely among countries. The prevalence of laterality defects was significantly lower in PCD individuals without pathognomonic ciliary ultrastructure defects (18%). The PCD cohort had a reduced median FEV1 z-score (-1.66). Median FEV1 z-scores were significantly lower in CCNO (-3.26), CCDC39 (-2.49) and CCDC40 (-2.96) variant groups, while the FEV1 z-score reductions were significantly milder in DNAH11 (-0.83) and ODAD1 (-0.85) variant groups compared to the whole PCD cohort. CONCLUSION: This unprecedented multinational dataset of DNA variants and information on their distribution across countries facilitates interpretation of the genetic epidemiology of PCD and indicates that the genetic variant can predict diagnostic and phenotypic features such as the course of lung function.
Assuntos
Estudos de Associação Genética , Genótipo , Fenótipo , Humanos , Masculino , Feminino , Adulto , Criança , Adolescente , Adulto Jovem , Pessoa de Meia-Idade , Europa (Continente) , Sistema de Registros , Dineínas do Axonema/genética , Volume Expiratório Forçado , Pré-Escolar , Síndrome de Kartagener/genética , Síndrome de Kartagener/fisiopatologia , Variação Genética , Mutação , Idoso , Lactente , Proteínas do Citoesqueleto , ProteínasRESUMO
Rationale: Primary ciliary dyskinesia (PCD) is a heterogeneous, multisystem disorder characterized by defective ciliary beating. Diagnostic guidelines of the American Thoracic Society and European Respiratory Society recommend measurement of nasal nitric oxide (nNO) for PCD diagnosis. Several studies demonstrated low nNO production rates in PCD individuals, but underlying causes remain elusive. Objectives: To determine nNO production rates in a well-characterized PCD cohort, including subgroup analyses with regard to ultrastructural and ciliary beating phenotypes. Methods: This study included 301 individuals assessed according to European Respiratory Society guidelines. Diagnostic cutoffs for nNO production rates for this study cohort and subgroups with normal and abnormal ultrastructure were determined. Diagnostic accuracy was also tested for the widely used 77 nl/min cutoff in this study cohort. The relationship between nNO production rates and ciliary beat frequencies (CBFs) was evaluated. Results: The study cohort comprised 180 individuals with definite PCD diagnosis, including 160 individuals with genetic diagnosis, 16 individuals with probable PCD diagnosis, and 105 disease controls. The 77 nl/min nNO cutoff showed a test sensitivity of 0.92 and specificity of 0.86. Test sensitivity was lower (0.85) in the subgroup of 47 PCD individuals with normal ultrastructure compared with 133 PCD individuals with abnormal ultrastructure (0.95). The optimal diagnostic cutoff for the nNO production rate for the whole study cohort was 69.8 nl/min (sensitivity, 0.92; specificity, 0.89); however, it was 107.8 nl/min (sensitivity, 0.89; specificity, 0.78) for the subgroup of PCD with normal ultrastructure. PCD individuals with normal ultrastructure compared with abnormal ultrastructure showed higher ciliary motility. Consistently, PCD individuals with higher CBFs showed higher nNO production rates. In addition, laterality defects occurred less frequently in PCD with normal ultrastructure. Conclusions: Measurements of nNO below the widely used 77 nl/min cutoff are less sensitive in detecting PCD individuals with normal ultrastructure. Our findings indicate that higher nNO production in this subgroup with a higher cutoff for the nNO production rate (107.8 nl/min) and higher residual ciliary motility is dependent on the underlying molecular PCD defect. Higher nNO production rates, higher residual CBFs, and the lower prevalence of laterality defects hamper diagnosis of PCD with normal ultrastructure. Adjusting the cutoff of nNO production rate to 107.8 nl/min might promote diagnosing PCD with normal ultrastructure.
Assuntos
Transtornos da Motilidade Ciliar , Síndrome de Kartagener , Cílios/ultraestrutura , Transtornos da Motilidade Ciliar/diagnóstico , Estudos de Coortes , Humanos , Síndrome de Kartagener/diagnóstico , Síndrome de Kartagener/genética , Óxido Nítrico , FenótipoRESUMO
Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45-/- mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module.
Assuntos
Nucleotídeos de Adenina/metabolismo , Astenozoospermia/genética , Proteínas do Citoesqueleto/deficiência , Situs Inversus/genética , Adolescente , Adulto , Animais , Astenozoospermia/patologia , Axonema/ultraestrutura , Sistemas CRISPR-Cas/genética , Cílios/metabolismo , Cílios/ultraestrutura , Proteínas do Citoesqueleto/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Epididimo/patologia , Feminino , Flagelos/metabolismo , Flagelos/ultraestrutura , Humanos , Mutação com Perda de Função , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Planárias/citologia , Planárias/genética , Planárias/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/patologia , Situs Inversus/diagnóstico por imagem , Situs Inversus/patologia , Motilidade dos Espermatozoides/genética , Tomografia Computadorizada por Raios X , Sequenciamento do ExomaRESUMO
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous chronic destructive airway disease. PCD is traditionally diagnosed by nasal nitric oxide measurement, analysis of ciliary beating, transmission electron microscopy (TEM), and/or genetic testing. In most genetic PCD variants, laterality defects can occur. However, it is difficult to establish a diagnosis in individuals with PCD and central pair (CP) defects, and alternative strategies are required because of very subtle ciliary beating abnormalities, a normal ciliary ultrastructure, and normal situs composition. Mutations in HYDIN are known to cause CP defects, but the genetic analysis of HYDIN variants is confounded by the pseudogene HYDIN2, which is almost identical in terms of intron/exon structure. We have previously shown that several types of PCD can be diagnosed via immunofluorescence (IF) microscopy analyses. Here, using IF microscopy, we demonstrated that in individuals with PCD and CP defects, the CP-associated protein SPEF2 is absent in HYDIN-mutant cells, revealing its dependence on functional HYDIN. Next, we performed IF analyses of SPEF2 in respiratory cells from 189 individuals with suspected PCD and situs solitus. Forty-one of the 189 individuals had undetectable SPEF2 and were subjected to a genetic analysis, which revealed one novel loss-of-function mutation in SPEF2 and three reported and 13 novel HYDIN mutations in 15 individuals. The remaining 25 individuals are good candidates for new, as-yet uncharacterized PCD variants that affect the CP apparatus. SPEF2 mutations have been associated with male infertility but have not previously been identified to cause PCD. We identified a mutation of SPEF2 that is causative for PCD with a CP defect. We conclude that SPEF2 IF analyses can facilitate the detection of CP defects and evaluation of the pathogenicity of HYDIN variants, thus aiding the molecular diagnosis of CP defects.
Assuntos
Proteínas de Ciclo Celular/deficiência , Cílios/química , Transtornos da Motilidade Ciliar/genética , Proteínas dos Microfilamentos/genética , Axonema/química , Axonema/ultraestrutura , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Transtornos da Motilidade Ciliar/diagnóstico , Transtornos da Motilidade Ciliar/patologia , Códon sem Sentido , Estudos de Coortes , Análise Mutacional de DNA , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Heterogeneidade Genética , Homozigoto , Humanos , Mutação com Perda de Função , Masculino , Proteínas dos Microfilamentos/fisiologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Depuração Mucociliar/genética , Mutação , Mutação de Sentido Incorreto , Linhagem , Cultura Primária de Células , Situs Inversus/diagnóstico , Situs Inversus/genética , Situs Inversus/patologiaRESUMO
Background - Nearly one in 100 live births presents with congenital heart defects (CHD). CHD are frequently associated with laterality defects, such as situs inversus totalis (SIT), a mirrored positioning of internal organs. Body laterality is established by a complex process: monocilia at the embryonic left-right organizer (LRO) facilitate both the generation and sensing of a leftward fluid flow. This induces the conserved left-sided Nodal signaling cascade to initiate asymmetric organogenesis. Primary ciliary dyskinesia (PCD) originates from dysfunction of motile cilia, causing symptoms such as chronic sinusitis, bronchiectasis and frequently SIT. The most frequently mutated gene in PCD, DNAH5 is associated with randomization of body asymmetry resulting in SIT in half of the patients; however, its relation to CHD occurrence in humans has not been investigated in detail so far. Methods - We performed genotype / phenotype correlations in 132 PCD patients carrying disease-causing DNAH5 mutations, focusing on situs defects and CHD. Using high speed video microscopy-, immunofluorescence-, and in situ hybridization analyses, we investigated the initial steps of left-right axis establishment in embryos of a Dnah5 mutant mouse model. Results - 65.9% (87 / 132) of the PCD patients carrying disease-causing DNAH5 mutations had laterality defects: 88.5% (77 / 87) presented with SIT, 11.5% (10 / 87) presented with situs ambiguus; and 6.1% (8 / 132) presented with CHD. In Dnah5mut/mut mice, embryonic LRO monocilia lack outer dynein arms resulting in immotile cilia, impaired flow at the LRO, and randomization of Nodal signaling with normal, reversed or bilateral expression of key molecules. Conclusions - For the first time, we directly demonstrate the disease-mechanism of laterality defects linked to DNAH5 deficiency at the molecular level during embryogenesis. We highlight that mutations in DNAH5 are not only associated with classical randomization of left-right body asymmetry but also with severe laterality defects including CHD.
RESUMO
BACKGROUND: Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon. METHODS: We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways. RESULTS: Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00-27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6%; 95%-CI 24.7 - 47.7%) compared to 16 women of controls (26.7%; 95%-CI 16.1 to 39.7%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05. CONCLUSIONS: To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results.
Assuntos
Proteína BRCA1/genética , Biomarcadores Tumorais , Neoplasias da Mama/genética , Reparo do DNA , Predisposição Genética para Doença , Deleção de Sequência , Adulto , Idade de Início , Idoso , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/epidemiologia , Bases de Dados Genéticas , Feminino , Estudos de Associação Genética , Loci Gênicos , Alemanha/epidemiologia , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Vigilância da População , Medição de Risco , Fatores de RiscoRESUMO
Dysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located ß-HC DNAH11 (defining ODA type 1), and the distally localized ß-HC DNAH9 (defining ODA type 2). Here we report loss-of-function mutations in DNAH9 in five independent families causing situs abnormalities associated with subtle respiratory ciliary dysfunction. Consistent with the observed subtle respiratory phenotype, high-speed video microscopy demonstrates distally impaired ciliary bending in DNAH9 mutant respiratory cilia. DNAH9-deficient cilia also lack other ODA components such as DNAH5, DNAI1, and DNAI2 from the distal axonemal compartment, demonstrating an essential role of DNAH9 for distal axonemal assembly of ODAs type 2. Yeast two-hybrid and co-immunoprecipitation analyses indicate interaction of DNAH9 with the ODA components DNAH5 and DNAI2 as well as the ODA-docking complex component CCDC114. We further show that during ciliogenesis of respiratory cilia, first proximally located DNAH11 and then distally located DNAH9 is assembled in the axoneme. We propose that the ß-HC paralogs DNAH9 and DNAH11 achieved specific functional roles for the distinct axonemal compartments during evolution with human DNAH9 function matching that of ancient ß-HCs such as that of the unicellular Chlamydomonas reinhardtii.
Assuntos
Dineínas do Axonema/genética , Cílios/genética , Dineínas/genética , Mutação/genética , Axonema/genética , Transtornos da Motilidade Ciliar/genética , Humanos , Síndrome de Kartagener/genética , FenótipoRESUMO
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility, and randomization of the left/right body axis as a result of defects of motile cilia and sperm flagella. We identified loss-of-function mutations in the open-reading frame C11orf70 in PCD individuals from five distinct families. Transmission electron microscopy analyses and high-resolution immunofluorescence microscopy demonstrate that loss-of-function mutations in C11orf70 cause immotility of respiratory cilia and sperm flagella, respectively, as a result of the loss of axonemal outer (ODAs) and inner dynein arms (IDAs), indicating that C11orf70 is involved in cytoplasmic assembly of dynein arms. Expression analyses of C11orf70 showed that C11orf70 is expressed in ciliated respiratory cells and that the expression of C11orf70 is upregulated during ciliogenesis, similar to other previously described cytoplasmic dynein-arm assembly factors. Furthermore, C11orf70 shows an interaction with cytoplasmic ODA/IDA assembly factor DNAAF2, supporting our hypothesis that C11orf70 is a preassembly factor involved in the pathogenesis of PCD. The identification of additional genetic defects that cause PCD and male infertility is of great importance for the clinic as well as for genetic counselling.
Assuntos
Padronização Corporal , Dineínas/genética , Síndrome de Kartagener/genética , Mutação/genética , Proteínas Nucleares/genética , Cílios/metabolismo , Cílios/ultraestrutura , Dineínas/ultraestrutura , Feminino , Genes Recessivos , Humanos , Mutação com Perda de Função/genética , Masculino , Cauda do Espermatozoide/metabolismoRESUMO
The prevalence of germ line mutations in non-BRCA1/2 genes associated with hereditary breast cancer (BC) is low, and the role of some of these genes in BC predisposition and pathogenesis is conflicting. In this study, 5589 consecutive BC index patients negative for pathogenic BRCA1/2 mutations and 2189 female controls were screened for germ line mutations in eight cancer predisposition genes (ATM, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD51D, and TP53). All patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germ line testing. The highest mutation prevalence was observed in the CHEK2 gene (2.5%), followed by ATM (1.5%) and PALB2 (1.2%). The mutation prevalence in each of the remaining genes was 0.3% or lower. Using Exome Aggregation Consortium control data, we confirm significant associations of heterozygous germ line mutations with BC for ATM (OR: 3.63, 95%CI: 2.67-4.94), CDH1 (OR: 17.04, 95%CI: 3.54-82), CHEK2 (OR: 2.93, 95%CI: 2.29-3.75), PALB2 (OR: 9.53, 95%CI: 6.25-14.51), and TP53 (OR: 7.30, 95%CI: 1.22-43.68). NBN germ line mutations were not significantly associated with BC risk (OR:1.39, 95%CI: 0.73-2.64). Due to their low mutation prevalence, the RAD51C and RAD51D genes require further investigation. Compared with control datasets, predicted damaging rare missense variants were significantly more prevalent in CHEK2 and TP53 in BC index patients. Compared with the overall sample, only TP53 mutation carriers show a significantly younger age at first BC diagnosis. We demonstrate a significant association of deleterious variants in the CHEK2, PALB2, and TP53 genes with bilateral BC. Both, ATM and CHEK2, were negatively associated with triple-negative breast cancer (TNBC) and estrogen receptor (ER)-negative tumor phenotypes. A particularly high CHEK2 mutation prevalence (5.2%) was observed in patients with human epidermal growth factor receptor 2 (HER2)-positive tumors.
Assuntos
Biomarcadores Tumorais , Genes BRCA1 , Genes BRCA2 , Síndrome Hereditária de Câncer de Mama e Ovário/diagnóstico , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Variação Genética , Síndrome Hereditária de Câncer de Mama e Ovário/epidemiologia , Humanos , Pessoa de Meia-Idade , Razão de Chances , Prevalência , Adulto JovemRESUMO
BACKGROUND: Germline mutations in the BRIP1 gene have been described as conferring a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC) pathogenesis remains controversial. METHODS: To assess the role of deleterious BRIP1 germline mutations in BC/OC predisposition, 6341 well-characterized index patients with BC, 706 index patients with OC, and 2189 geographically matched female controls were screened for loss-of-function (LoF) mutations and potentially damaging missense variants. All index patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germline testing and tested negative for pathogenic BRCA1/2 variants. RESULTS: BRIP1 LoF mutations confer a high OC risk in familial index patients (odds ratio (OR) = 20.97, 95% confidence interval (CI) = 12.02-36.57, P < 0.0001) and in the subgroup of index patients with late-onset OC (OR = 29.91, 95% CI = 14.99-59.66, P < 0.0001). No significant association of BRIP1 LoF mutations with familial BC was observed (OR = 1.81 95% CI = 1.00-3.30, P = 0.0623). In the subgroup of familial BC index patients without a family history of OC there was also no apparent association (OR = 1.42, 95% CI = 0.70-2.90, P = 0.3030). In 1027 familial BC index patients with a family history of OC, the BRIP1 mutation prevalence was significantly higher than that observed in controls (OR = 3.59, 95% CI = 1.43-9.01; P = 0.0168). Based on the negative association between BRIP1 LoF mutations and familial BC in the absence of an OC family history, we conclude that the elevated mutation prevalence in the latter cohort was driven by the occurrence of OC in these families. Compared with controls, predicted damaging rare missense variants were significantly more prevalent in OC (P = 0.0014) but not in BC (P = 0.0693) patients. CONCLUSIONS: To avoid ambiguous results, studies aimed at assessing the impact of candidate predisposition gene mutations on BC risk might differentiate between BC index patients with an OC family history and those without. In familial cases, we suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects cannot be excluded.
Assuntos
Neoplasias da Mama/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , RNA Helicases/genética , Adulto , Idoso , Neoplasias da Mama/patologia , Feminino , Estudos de Associação Genética , Mutação em Linhagem Germinativa , Humanos , Mutação com Perda de Função/genética , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Linhagem , Fatores de RiscoRESUMO
Population-based genome wide association studies have identified a locus at 9p22.2 associated with ovarian cancer risk, which also modifies ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. We conducted fine-scale mapping at 9p22.2 to identify potential causal variants in BRCA1 and BRCA2 mutation carriers. Genotype data were available for 15,252 (2,462 ovarian cancer cases) BRCA1 and 8,211 (631 ovarian cancer cases) BRCA2 mutation carriers. Following genotype imputation, ovarian cancer associations were assessed for 4,873 and 5,020 SNPs in BRCA1 and BRCA 2 mutation carriers respectively, within a retrospective cohort analytical framework. In BRCA1 mutation carriers one set of eight correlated candidate causal variants for ovarian cancer risk modification was identified (top SNP rs10124837, HR: 0.73, 95%CI: 0.68 to 0.79, p-value 2× 10-16). These variants were located up to 20 kb upstream of BNC2. In BRCA2 mutation carriers one region, up to 45 kb upstream of BNC2, and containing 100 correlated SNPs was identified as candidate causal (top SNP rs62543585, HR: 0.69, 95%CI: 0.59 to 0.80, p-value 1.0 × 10-6). The candidate causal in BRCA1 mutation carriers did not include the strongest associated variant at this locus in the general population. In sum, we identified a set of candidate causal variants in a region that encompasses the BNC2 transcription start site. The ovarian cancer association at 9p22.2 may be mediated by different variants in BRCA1 mutation carriers and in the general population. Thus, potentially different mechanisms may underlie ovarian cancer risk for mutation carriers and the general population.
Assuntos
Cromossomos Humanos Par 9 , Genes BRCA1 , Genes BRCA2 , Triagem de Portadores Genéticos , Predisposição Genética para Doença , Neoplasias Ovarianas/genética , Mapeamento Cromossômico , Feminino , Humanos , Polimorfismo de Nucleotídeo ÚnicoRESUMO
A recent analysis using family history weighting and co-observation classification modeling indicated that BRCA1 c.594-2A > C (IVS9-2A > C), previously described to cause exon 10 skipping (a truncating alteration), displays characteristics inconsistent with those of a high risk pathogenic BRCA1 variant. We used large-scale genetic and clinical resources from the ENIGMA, CIMBA and BCAC consortia to assess pathogenicity of c.594-2A > C. The combined odds for causality considering case-control, segregation and breast tumor pathology information was 3.23 × 10-8 Our data indicate that c.594-2A > C is always in cis with c.641A > G. The spliceogenic effect of c.[594-2A > C;641A > G] was characterized using RNA analysis of human samples and splicing minigenes. As expected, c.[594-2A > C; 641A > G] caused exon 10 skipping, albeit not due to c.594-2A > C impairing the acceptor site but rather by c.641A > G modifying exon 10 splicing regulatory element(s). Multiple blood-based RNA assays indicated that the variant allele did not produce detectable levels of full-length transcripts, with a per allele BRCA1 expression profile composed of ≈70-80% truncating transcripts, and ≈20-30% of in-frame Δ9,10 transcripts predicted to encode a BRCA1 protein with tumor suppression function.We confirm that BRCA1c.[594-2A > C;641A > G] should not be considered a high-risk pathogenic variant. Importantly, results from our detailed mRNA analysis suggest that BRCA-associated cancer risk is likely not markedly increased for individuals who carry a truncating variant in BRCA1 exons 9 or 10, or any other BRCA1 allele that permits 20-30% of tumor suppressor function. More generally, our findings highlight the importance of assessing naturally occurring alternative splicing for clinical evaluation of variants in disease-causing genes.
Assuntos
Proteína BRCA1/genética , Neoplasias da Mama/genética , Mutação/genética , Neoplasias Ovarianas/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Processamento Alternativo/genética , Neoplasias da Mama/patologia , Análise Mutacional de DNA , Éxons/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Sítios de Splice de RNA/genética , Splicing de RNA/genéticaRESUMO
Primary ciliary dyskinesia (PCD) is a recessively inherited disease that leads to chronic respiratory disorders owing to impaired mucociliary clearance. Conventional transmission electron microscopy (TEM) is a diagnostic standard to identify ultrastructural defects in respiratory cilia but is not useful in approximately 30% of PCD cases, which have normal ciliary ultrastructure. DNAH11 mutations are a common cause of PCD with normal ciliary ultrastructure and hyperkinetic ciliary beating, but its pathophysiology remains poorly understood. We therefore characterized DNAH11 in human respiratory cilia by immunofluorescence microscopy (IFM) in the context of PCD. We used whole-exome and targeted next-generation sequence analysis as well as Sanger sequencing to identify and confirm eight novel loss-of-function DNAH11 mutations. We designed and validated a monoclonal antibody specific to DNAH11 and performed high-resolution IFM of both control and PCD-affected human respiratory cells, as well as samples from green fluorescent protein (GFP)-left-right dynein mice, to determine the ciliary localization of DNAH11. IFM analysis demonstrated native DNAH11 localization in only the proximal region of wild-type human respiratory cilia and loss of DNAH11 in individuals with PCD with certain loss-of-function DNAH11 mutations. GFP-left-right dynein mice confirmed proximal DNAH11 localization in tracheal cilia. DNAH11 retained proximal localization in respiratory cilia of individuals with PCD with distinct ultrastructural defects, such as the absence of outer dynein arms (ODAs). TEM tomography detected a partial reduction of ODAs in DNAH11-deficient cilia. DNAH11 mutations result in a subtle ODA defect in only the proximal region of respiratory cilia, which is detectable by IFM and TEM tomography.
Assuntos
Dineínas do Axonema/metabolismo , Cílios/metabolismo , Dineínas/metabolismo , Pulmão/metabolismo , Sequência de Bases , Cílios/ultraestrutura , Dineínas/ultraestrutura , Homozigoto , Humanos , Síndrome de Kartagener/genética , Mutação/genética , Transporte ProteicoRESUMO
The X-linked reproductive homeobox (RHOX) gene cluster encodes transcription factors preferentially expressed in reproductive tissues. This gene cluster has important roles in male fertility based on phenotypic defects of Rhox-mutant mice and the finding that aberrant RHOX promoter methylation is strongly associated with abnormal human sperm parameters. However, little is known about the molecular mechanism of RHOX function in humans. Using gene expression profiling, we identified genes regulated by members of the human RHOX gene cluster. Some genes were uniquely regulated by RHOXF1 or RHOXF2/2B, while others were regulated by both of these transcription factors. Several of these regulated genes encode proteins involved in processes relevant to spermatogenesis; e.g. stress protection and cell survival. One of the target genes of RHOXF2/2B is RHOXF1, suggesting cross-regulation to enhance transcriptional responses. The potential role of RHOX in human infertility was addressed by sequencing all RHOX exons in a group of 250 patients with severe oligozoospermia. This revealed two mutations in RHOXF1 (c.515G > A and c.522C > T) and four in RHOXF2/2B (-73C > G, c.202G > A, c.411C > T and c.679G > A), of which only one (c.202G > A) was found in a control group of men with normal sperm concentration. Functional analysis demonstrated that c.202G > A and c.679G > A significantly impaired the ability of RHOXF2/2B to regulate downstream genes. Molecular modelling suggested that these mutations alter RHOXF2/F2B protein conformation. By combining clinical data with in vitro functional analysis, we demonstrate how the X-linked RHOX gene cluster may function in normal human spermatogenesis and we provide evidence that it is impaired in human male fertility.
Assuntos
Proteínas de Homeodomínio/genética , Infertilidade Masculina/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Genes Homeobox , Genes Ligados ao Cromossomo X , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Masculino , Família Multigênica , Regiões Promotoras Genéticas , Espermatogênese/genética , Espermatozoides/patologia , Fatores de Transcrição/genéticaRESUMO
Heterotaxy (also known as situs ambiguous) and situs inversus totalis describe disorders of laterality in which internal organs do not display their typical pattern of asymmetry. First described around 1600 by Girolamo Fabrizio, numerous case reports about laterality disorders in humans were published without any idea about the underlying cause. Then, in 1976, immotile cilia were described as the cause of a human syndrome that was previously clinically described, both in 1904 by AK Siewert and in 1933 by Manes Kartagener, as an association of situs inversus with chronic sinusitis and bronchiectasis, now commonly known as Kartagener's syndrome. Despite intense research, the underlying defect of laterality disorders remained unclear. Nearly 20 years later in 1995, Björn Afzelius discussed five hypotheses to explain the connection between ciliary defects and loss of laterality control in a paper published in the International Journal of Developmental Biology asking: 'Situs inversus and ciliary abnormalities: What is the connection?'. Here, nearly 20 research years later, we revisit some of the key findings that led to the current knowledge about the connection between situs inversus and ciliary abnormalities.
RESUMO
BACKGROUND: Nephrotic syndrome (NS) is pathological condition characterized by heavy proteinuria. Our study investigates hypothesis that change in cell proliferation of proximal tubules influences primary cilia structure and function and promotes cystogenesis in congenital nephrotic syndrome of the Finnish type (CNF) and focal segmental glomerulosclerosis (FSGS). METHODS: CNF kidneys were analyzed genetically. Proliferation (Ki-67), apoptosis (caspase-3), and primary cilia (α-tubulin) length and structure were analyzed immunohistochemically and ultrastructurally in healthy, CNF and FSGS kidneys. Cyst diameters were measured and correlated with proliferation index. RESULTS: Proximal tubules cells of healthy kidneys did not proliferate. In nephrotic kidneys, tubules with apparently normal diameter covered by cuboidal/columnar epithelium (PTNC) contained 81.54% of proliferating cells in CNF and 36.18% in FSGS, while cysts covered with columnar epithelium (CC) contained 37.52% of proliferating cells in CNF and 45.23% in FSGS. The largest cysts, covered with squamous epithelium (CS) had 11.54% of proliferating cells in CNF and 13.76% in FSGS. Increase in cysts diameter correlated with changes in proliferation index, tubular cells shape, primary cilia formation and appearance of apoptotic cells. CONCLUSIONS: We present a novel histopathological data on the structure and possible changes in function of tubular cell in NS kidneys during cystogenesis. We suggest existence of common principles of cystogenesis in CNF and FSGS kidneys, including serious disturbances of tubular cells proliferation and apoptosis, and faulty primary cilia signaling leading to deterioration of proteinuria in NS kidneys.