Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 161(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39092934

RESUMO

This paper is dedicated to the quantum chemical package Jaguar, which is commercial software developed and distributed by Schrödinger, Inc. We discuss Jaguar's scientific features that are relevant to chemical research as well as describe those aspects of the program that are pertinent to the user interface, the organization of the computer code, and its maintenance and testing. Among the scientific topics that feature prominently in this paper are the quantum chemical methods grounded in the pseudospectral approach. A number of multistep workflows dependent on Jaguar are covered: prediction of protonation equilibria in aqueous solutions (particularly calculations of tautomeric stability and pKa), reactivity predictions based on automated transition state search, assembly of Boltzmann-averaged spectra such as vibrational and electronic circular dichroism, as well as nuclear magnetic resonance. Discussed also are quantum chemical calculations that are oriented toward materials science applications, in particular, prediction of properties of optoelectronic materials and organic semiconductors, and molecular catalyst design. The topic of treatment of conformations inevitably comes up in real world research projects and is considered as part of all the workflows mentioned above. In addition, we examine the role of machine learning methods in quantum chemical calculations performed by Jaguar, from auxiliary functions that return the approximate calculation runtime in a user interface, to prediction of actual molecular properties. The current work is second in a series of reviews of Jaguar, the first having been published more than ten years ago. Thus, this paper serves as a rare milestone on the path that is being traversed by Jaguar's development in more than thirty years of its existence.

2.
J Chem Phys ; 161(5)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39087536

RESUMO

A new computational framework for spinor-based relativistic exact two-component (X2C) calculations is developed using contracted basis sets with a spin-orbit contraction scheme. Generally contracted, j-adapted basis sets of p-block elements using primitive functions in the correlation-consistent basis sets are constructed for the X2C Hamiltonian with atomic mean-field spin-orbit integrals (the X2CAMF scheme). The contraction coefficients are taken from atomic X2CAMF Hartree-Fock spinors, thereby following the simple concept of a linear combination of atomic orbitals. Benchmark calculations of spin-orbit splittings, equilibrium bond lengths, and harmonic vibrational frequencies demonstrate the accuracy and efficacy of the j-adapted spin-orbit contraction scheme.

3.
J Chem Theory Comput ; 19(24): 9009-9017, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38090757

RESUMO

The Dirac-Coulomb-Breit (DCB) operator is widely recognized for its ability to accurately capture relativistic effects and spin-physics in molecular calculations. However, due to its high computational cost, there is a need to develop low-scaling approximations without compromising accuracy. To tackle this challenge, it becomes essential to gain a deeper understanding of the DCB operator's behavior. This work aims to explore local integral approximations, shedding light on the locality of the parts of the charge-current distribution due to the small component. In particular, we propose an atomic Breit approximation that leverages an analysis of the behavior observed in a series of gold chains. Through benchmark studies of metal complexes, we evaluated the accuracy and performance of the proposed atomic Breit approximation. This work provides a comprehensive understanding of the behavior of the charge-current distribution in terms of its contributions from its AO basis constituents, facilitating the development of low-scaling methods that strike a balance between computational efficiency and accuracy.

4.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37728204

RESUMO

In this study, we present an efficient integral decomposition approach called the restricted-kinetic-balance resolution-of-the-identity (RKB-RI) algorithm, which utilizes a tunable RI method based on the Cholesky integral decomposition for in-core relativistic quantum chemistry calculations. The RKB-RI algorithm incorporates the restricted-kinetic-balance condition and offers a versatile framework for accurate computations. Notably, the Cholesky integral decomposition is employed not only to approximate symmetric large-component electron repulsion integrals but also those involving small-component basis functions. In addition to comprehensive error analysis, we investigate crucial conditions, such as the kinetic balance condition and variational stability, which underlie the applicability of Dirac relativistic electronic structure theory. We compare the computational cost of the RKB-RI approach with the full in-core method to assess its efficiency. To evaluate the accuracy and reliability of the RKB-RI method proposed in this work, we employ actinyl oxides as benchmark systems, leveraging their properties for validation purposes. This investigation provides valuable insights into the capabilities and performance of the RKB-RI algorithm and establishes its potential as a powerful tool in the field of relativistic quantum chemistry.

5.
J Chem Phys ; 158(17)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37139994

RESUMO

Variational treatment of the Dirac-Coulomb-Gaunt or Dirac-Coulomb-Breit two-electron interaction at the Dirac-Hartree-Fock level is the starting point of high-accuracy four-component calculations of atomic and molecular systems. In this work, we introduce, for the first time, the scalar Hamiltonians derived from the Dirac-Coulomb-Gaunt and Dirac-Coulomb-Breit operators based on spin separation in the Pauli quaternion basis. While the widely used spin-free Dirac-Coulomb Hamiltonian includes only the direct Coulomb and exchange terms that resemble nonrelativistic two-electron interactions, the scalar Gaunt operator adds a scalar spin-spin term. The spin separation of the gauge operator gives rise to an additional scalar orbit-orbit interaction in the scalar Breit Hamiltonian. Benchmark calculations of Aun (n = 2-8) show that the scalar Dirac-Coulomb-Breit Hamiltonian can capture 99.99% of the total energy with only 10% of the computational cost when real-valued arithmetic is used, compared to the full Dirac-Coulomb-Breit Hamiltonian. The scalar relativistic formulation developed in this work lays the theoretical foundation for the development of high-accuracy, low-cost correlated variational relativistic many-body theory.

6.
J Chem Theory Comput ; 19(1): 198-210, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36516433

RESUMO

Diffuse s, p, and d functions have been optimized for use with previously reported relativistic basis sets for the s and d blocks of the periodic table. The functions were optimized on the 4:1 weighted average of the s2 and p2 configurations of the anion, with the d shell in the dn+1 configuration for the d blocks. Exponents were extrapolated for groups 2 and 12, which have unstable or weakly bound anions. The diffuse basis sets have been tested by application to calculations of electron affinities of the group 11 elements (Cu, Ag, and Au), double electron affinities of the group 11 monocations, and potential energy curves of Mg2 and Ca2 van der Waals dimers, as well as some response properties of the group 1 anions (Rb-, Cs-, and Fr-), the group 2 elements (Sr, Ba, and Ra), and RbLi, CsLi, and FrLi molecules.


Assuntos
Ânions
7.
Phys Chem Chem Phys ; 23(39): 22330-22343, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34596656

RESUMO

We report an investigation of the low-lying excited states of the YbF molecule-a candidate molecule for experimental measurements of the electron electric dipole moment-with 2-component based multi-reference configuration interaction (MRCI), equation of motion coupled cluster (EOM-CCSD) and the extrapolated intermediate Hamiltonian Fock-space coupled cluster (XIHFS-CCSD). Specifically, we address the question of the nature of these low-lying states in terms of configurations containing filled or partially-filled Yb 4f shells. We show that while it does not appear possible to carry out calculations with both kinds of configurations contained in the same active space, reliable information can be extracted from different sectors of Fock space-that is, by performing electron attachment and detachment IHFS-CCSD and EOM-CCSD calculation on the closed-shell YbF+ and YbF- species, respectively. From these calculations we predict Ω = 1/2, 3/2 states, arising from the 4f13σ26s, 4f145d1/6p1, and 4f135d1σ16s configurations to be able to interact as they appear in the same energy range around the ground-state equilibrium geometry. As these states are generated from different sectors of Fock space, they are almost orthogonal and provide complementary descriptions of parts of the excited state manifold. To obtain a comprehensive picture, we introduce a simple adiabatization model to extract energies of interacting Ω = 1/2, 3/2 states that can be compared to experimental observations.

8.
J Chem Phys ; 152(20): 204104, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32486677

RESUMO

DIRAC is a freely distributed general-purpose program system for one-, two-, and four-component relativistic molecular calculations at the level of Hartree-Fock, Kohn-Sham (including range-separated theory), multiconfigurational self-consistent-field, multireference configuration interaction, electron propagator, and various flavors of coupled cluster theory. At the self-consistent-field level, a highly original scheme, based on quaternion algebra, is implemented for the treatment of both spatial and time reversal symmetry. DIRAC features a very general module for the calculation of molecular properties that to a large extent may be defined by the user and further analyzed through a powerful visualization module. It allows for the inclusion of environmental effects through three different classes of increasingly sophisticated embedding approaches: the implicit solvation polarizable continuum model, the explicit polarizable embedding model, and the frozen density embedding model.

9.
J Chem Phys ; 145(7): 074104, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544084

RESUMO

This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the "exact" value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the underlying minmax principle and our theoretical analysis. We also show that the relativistic correlation energy, obtained from no-pair full MCSCF calculations, scales at worst as X(-2) with respect to the cardinal number X of our correlation-consistent basis sets optimized for the two-electron atoms. This is better than the X(-1) scaling suggested by previous studies, but worse than the X(-3) scaling observed in the nonrelativistic domain. The well-known 1/Z- expansion in nonrelativistic atomic theory follows from coordinate scaling. We point out that coordinate scaling for consistency should be accompanied by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the relativistic domain an explicit scaling of the speed of light is required. This in turn explains why the relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to nonrelativistic theory.

10.
J Chem Phys ; 139(2): 021103, 2013 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-23862917

RESUMO

A spectral representation of the self-energy based on hydrogenic atomic data is examined for its usefulness to evaluate the self-energy of many-electron atoms, and thus its potential for molecular calculations. Use of the limited hydrogenic data with a diagonal projection overestimates the valence self-energy by an order of magnitude. The same diagonal projection for the vacuum polarization produces a similar overestimate, but a full projection produces values that are within a factor of 2 of the exact value, as does a density-fitting procedure.

11.
J Phys Chem A ; 113(45): 12638-44, 2009 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-19670829

RESUMO

Relativistic basis sets of double-zeta, triple-zeta, and quadruple-zeta quality have been optimized in Dirac-Hartree-Fock calculations for the 4s, 5s, 6s, and 7s elements: K, Ca, Rb, Sr, Cs, Ba, Fr, and Ra. The basis sets include SCF exponents for the occupied spinors and for the np shell, exponents of correlating and polarizing functions for the (n - 1) shell and correlating functions for the (n - 2) shell. For the group 2 elements, correlating functions are given for the ns and np shells, whereas for the group 1 elements, functions for polarization of the ns shell are provided. A finite nuclear size was used in all optimizations. Prescriptions are given for constructing contracted basis sets by addition of primitives to the SCF occupied functions.

12.
J Comput Chem ; 23(8): 786-93, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12012355

RESUMO

An approach to the development of a systematic sequence of relativistic approximations is reviewed. The approach depends on the atomically localized nature of relativistic effects, and is based on the normalized elimination of the small component in the matrix modified Dirac equation. Errors in the approximations are assessed relative to four-component Dirac-Hartree-Fock calculations or other reference points. Projection onto the positive energy states of the isolated atoms provides an approximation in which the energy-dependent parts of the matrices can be evaluated in separate atomic calculations and implemented in terms of two sets of contraction coefficients. The errors in this approximation are extremely small, of the order of 0.001 pm in bond lengths and tens of microhartrees in absolute energies. From this approximation it is possible to partition the atoms into relativistic and nonrelativistic groups and to treat the latter with the standard operators of nonrelativistic quantum mechanics. This partitioning is shared with the relativistic effective core potential approximation. For atoms in the second period, errors in the approximation are of the order of a few hundredths of a picometer in bond lengths and less than 1 kJ mol(-1) in dissociation energies; for atoms in the third period, errors are a few tenths of a picometer and a few kilojoule/mole, respectively. A third approximation for scalar relativistic effects replaces the relativistic two-electron integrals with the nonrelativistic integrals evaluated with the atomic Foldy-Wouthuysen coefficients as contraction coefficients. It is similar to the Douglas-Kroll-Hess approximation, and is accurate to about 0.1 pm and a few tenths of a kilojoule/mole. The integrals in all the approximations are no more complicated than the integrals in the full relativistic methods, and their derivatives are correspondingly easy to formulate and evaluate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA