Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 41(1): 36-44, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11252162

RESUMO

N2 fixation (nitrogenase activity), primary production, and diazotrophic community composition of stromatolite mats from Highborne Cay, Exuma, Bahamas, were examined over a 2-year period (1997-1998). The purpose of the study was to characterize the ecophysiology of N2 fixation in modern marine stromatolites. Microbial mats are an integral surface component of these stromatolites and are hypothesized to have a major role in stromatolite formation and growth. The stromatolite mats contained active photosynthetic and diazotrophic assemblages that exhibited temporal separation of nitrogenase activity (NA) and photosynthesis. Maximal NA was detected at night. Seasonal differences in NA and net O2 production were observed. Photosynthetic activity and the availability of reduced organic carbon appear to be the key determinants of NA. Additions of the de novo protein synthesis inhibitor chloramphenicol did not inhibit NA in March 1998, but greatly inhibited NA in August 1998. Partial sequence analysis of the nifH gene indicates that a broad diversity of diazotrophs may be responsible for NA in the stromatolites.

2.
ScientificWorldJournal ; 1: 76-113, 2001 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12805693

RESUMO

Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia), toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human) health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria) are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis) and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria) that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia) are capable of fixing atmospheric nitrogen (N2), enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from zooplankton to further up the food chain. Both N2- and non-N2-fixing genera participate in mutualistic and symbiotic associations with microorganisms, higher plants, and animals. These associations appear to be of great benefit to their survival and periodic dominance. In this review, we address the ecological impacts and environmental controls of harmful blooms, with an emphasis on the ecology, physiology, and management of cyanobacterial bloom taxa. Combinations of physical, chemical, and biotic features of natural waters function in a synergistic fashion to determine the sensitivity of water bodies. In waters susceptible to blooms, human activities in water- and airsheds have been linked to the extent and magnitudes of blooms. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on nitrogen (N) and/or phosphorus (P). The types and amount of nutrient input constraints depend on hydrologic, climatic, geographic, and geologic factors, which interact with anthropogenic and natural nutrient input regimes. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of harmful blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by enhanced flushing and artificial mixing (in conjunction with nutrient input constraints) can be particularly effective alternatives. Implications of various management strategies, based on combined ecophysiological and environmental considerations, are discussed.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/patogenicidade , Eutrofização/fisiologia , Água Doce/microbiologia , Microbiologia da Água
3.
Mutat Res ; 407(2): 157-68, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9637244

RESUMO

In previously reported studies, we transfected repair-proficient murine fibroblasts with the denV gene of bacteriophage T4 and showed that expression of encoded endonuclease V markedly enhanced cyclobutane pyrimidine dimer (CPD) repair and reduced the frequency of ultraviolet radiation (UV)-induced mutations. In the present studies, we compared the spectra of UV-induced mutations at the hprt locus in denV-transfected and control cells. A significant difference in mutation types was observed. While multiple base deletions and single base insertions were found in denV-transfected but not control cells, multiple tandem and non-tandem point mutations identified in control cells were absent in denV-transfected cells. When we compared colony survival following UV exposure in the two cell lines, it appeared that endonuclease V expression did not enhance UV resistance, instead denV-transfected cells had increased susceptibility to low fluences of UV. The effects of endonuclease V expression on UV resistance and on UV mutational spectrum are likely to be due both to the removal of CPDs and to the novel enzymatic activity of endonuclease V.


Assuntos
Reparo do DNA/genética , Endodesoxirribonucleases/genética , Fibroblastos/efeitos da radiação , Mutagênese/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Animais , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , Desoxirribonuclease (Dímero de Pirimidina) , Fibroblastos/citologia , Fibroblastos/enzimologia , Expressão Gênica/genética , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/efeitos da radiação , Camundongos , Mutagênese/genética , Mutação/genética , Mutação/efeitos da radiação , Tolerância a Radiação/genética , Raios Ultravioleta
4.
Br Dent Surg Assist ; 27(5): 89-90, 1968 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-5250553
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA