Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39204478

RESUMO

Base isolators, traditionally made from natural rubber reinforced with steel sheets (SERIs), mitigate energy during seismic events, but their use in developing countries has been limited due to high cost and weight. To make them more accessible, lighter, cost-effective reinforcement fibers have been utilized. Additionally, the increasing use of natural rubber has caused waste storage and disposal issues, contributing to environmental pollution and disease spread. Exploring recycled rubber matrices as alternatives, this study improves seismic isolators' mechanical properties through modified reinforcements and layer adhesion. Eight reinforcement materials and eight adhesives, which may be activated with or without heat application, are systematically evaluated. Employing the chosen reinforcements and adhesives, prototypes are tested mechanically to examine their vertical and horizontal performance through cyclic compression and cyclic shear testing. Two innovative devices using recycled rubber matrices were developed, one using a layering technique and another through a monolithic approach shaped with heat and pressure. Both integrate a fiberglass mesh reinforced with epoxy resin; one employs a heat-activated hybrid adhesive, while the other uses a cold bonding adhesive. These prototypes exhibit potential in advancing seismic isolation technology for low-rise buildings in developing countries, highlighting the viability of recycled materials in critical structural applications.

2.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37177404

RESUMO

The Federal Highway Administration (FHWA) mandates biannual bridge inspections to assess the condition of all bridges in the United States. These inspections are recorded in the National Bridge Inventory (NBI) and the respective state's databases to manage, study, and analyze the data. As FHWA specifications become more complex, inspections require more training and field time. Recently, element-level inspections were added, assigning a condition state to each minor element in the bridge. To address this new requirement, a machine-aided bridge inspection method was developed using artificial intelligence (AI) to assist inspectors. The proposed method focuses on the condition state assessment of cracking in reinforced concrete bridge deck elements. The deep learning-based workflow integrated with image classification and semantic segmentation methods is utilized to extract information from images and evaluate the condition state of cracks according to FHWA specifications. The new workflow uses a deep neural network to extract information required by the bridge inspection manual, enabling the determination of the condition state of cracks in the deck. The results of experimentation demonstrate the effectiveness of this workflow for this application. The method also balances the costs and risks associated with increasing levels of AI involvement, enabling inspectors to better manage their resources. This AI-based method can be implemented by asset owners, such as Departments of Transportation, to better serve communities.

3.
Sensors (Basel) ; 20(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183201

RESUMO

Image data remains an important tool for post-event building assessment and documentation. After each natural hazard event, significant efforts are made by teams of engineers to visit the affected regions and collect useful image data. In general, a global positioning system (GPS) can provide useful spatial information for localizing image data. However, it is challenging to collect such information when images are captured in places where GPS signals are weak or interrupted, such as the indoor spaces of buildings. The inability to document the images' locations hinders the analysis, organization, and documentation of these images as they lack sufficient spatial context. In this work, we develop a methodology to localize images and link them to locations on a structural drawing. A stream of images can readily be gathered along the path taken through a building using a compact camera. These images may be used to compute a relative location of each image in a 3D point cloud model, which is reconstructed using a visual odometry algorithm. The images may also be used to create local 3D textured models for building-components-of-interest using a structure-from-motion algorithm. A parallel set of images that are collected for building assessment is linked to the image stream using time information. By projecting the point cloud model to the structural drawing, the images can be overlaid onto the drawing, providing clear context information necessary to make use of those images. Additionally, components- or damage-of-interest captured in these images can be reconstructed in 3D, enabling detailed assessments having sufficient geospatial context. The technique is demonstrated by emulating post-event building assessment and data collection in a real building.

4.
Front Built Environ ; 6: 159-171, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34159156

RESUMO

Currently, the lack of (1) a sufficiently integrated, adaptive, and reflective framework to ensure the safety, integrity, and coordinated evolution of a real-time hybrid simulation (RTHS) as it runs, and (2) the ability to articulate and gauge suitable measures of the performance and integrity of an experiment, both as it runs and post-hoc, have prevented researchers from tackling a wide range of complex research problems of vital national interest. To address these limitations of the current state-of-the-art, we propose a framework named Reflective Framework for Performance Management (REFORM) of real-time hybrid simulation. REFORM will support the execution of more complex RTHS experiments than can be conducted today, and will allow them to be configured rapidly, performed safely, and analyzed thoroughly. This study provides a description of the building blocks associated with the first phase of this development (REFORM-I). REFORM-I is verified and demonstrated through application to an expanded version of the benchmark control problem for real-time hybrid simulation.

5.
Sensors (Basel) ; 18(9)2018 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-30205621

RESUMO

After a disaster strikes an urban area, damage to the façades of a building may produce dangerous falling hazards that jeopardize pedestrians and vehicles. Thus, building façades must be rapidly inspected to prevent potential loss of life and property damage. Harnessing the capacity to use new vision sensors and associated sensing platforms, such as unmanned aerial vehicles (UAVs) would expedite this process and alleviate spatial and temporal limitations typically associated with human-based inspection in high-rise buildings. In this paper, we have developed an approach to perform rapid and accurate visual inspection of building façades using images collected from UAVs. An orthophoto corresponding to any reasonably flat region on the building (e.g., a façade or building side) is automatically constructed using a structure-from-motion (SfM) technique, followed by image stitching and blending. Based on the geometric relationship between the collected images and the constructed orthophoto, high-resolution region-of-interest are automatically extracted from the collected images, enabling efficient visual inspection. We successfully demonstrate the capabilities of the technique using an abandoned building of which a façade has damaged building components (e.g., window panes or external drainage pipes).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA