RESUMO
APOEε4 is the strongest genetic risk factor for Alzheimer's disease (AD) with approximately 50% of AD patients carrying at least one APOEε4 allele. Our group identified a protective interaction between APOEε4 with the African-specific A allele of rs10423769, which reduces the AD risk effect of APOEε4 homozygotes by approximately 75%. The protective variant lies 2Mb from APOE in a region of segmental duplications (SD) of chromosome 19 containing a cluster of pregnancy specific beta-1 glycoprotein genes (PSGs) and a long non-coding RNA. Using both short and long read sequencing, we demonstrate that rs10423769_A allele lies within a unique single haplotype inside this region of segmental duplication. We identified the protective haplotype in all African ancestry populations studied, including both West and East Africans, suggesting the variant has an old origin. Long-read sequencing identified both structural and DNA methylation differences between the protective rs10423769_A allele and non-protective haplotypes. An expanded variable number tandem repeat (VNTR) containing multiple MEF2 family transcription factor binding motifs was found associated with the protective haplotype (p-value = 2.9e-10). These findings provide novel insights into the mechanisms of this African-origin protective variant for AD in APOEε4 carriers and supports the importance of including all ancestries in AD research.
RESUMO
NF2-Related Schwannomatosis (previously referred to as Neurofibromatosis Type 2, or NF2) is a genetic-associated disease resulting from mutations in the gene, NF2. NF2 encodes the merlin protein, which acts as a tumor suppressor. Bilateral vestibular schwannoma (VS) is a hallmark of NF2. Although the exactly molecular mechanism mediating NF2-driven schwannomatosis remain unclear, it is known that defective Merlin protein functionality leads to abnormal cell proliferation. Herein, we utilized a human induced pluripotent stem cell (hiPSC)-based Schwann cell (SC) model to investigate the role of merlin in human SCs. SCs were derived from hiPSCs carrying a NF2 mutation (c.191 T > C; p. L64P), its isogenic wild-type control cell line, and a NF2 patient-derived hiPSC line. NF2 mutant SCs showed abnormal cellular morphology and proliferation. Proteomic analyses identified novel interaction partners for Merlin - Arkadia and SKOR2. Our results established a new model in which merlin interacts with Arkadia and SKOR2 and this interaction is required for the proper activation of the SMAD-dependent pathway in TGFß signaling.
RESUMO
Ischemic stroke and cerebral amyloid angiopathy (CAA) pose significant challenges in an aging population, particularly in post-stroke recovery. Using the 5xFAD mouse model, we explore the relationship between CAA, ischemic stroke, and tissue recovery. We hypothesize that amyloid-beta accumulation worsens stroke outcomes by inducing blood-brain barrier (BBB) dysfunction, leading to impaired neurogenesis. Our findings show that CAA exacerbates stroke outcomes, with mice exhibiting constricted BBB microvessels, reduced cerebral blood flow, and impaired tissue recovery. Transcriptional analysis shows that endothelial cells and neural progenitor cells (NPCs) in the hippocampus exhibit differential gene expression in response to CAA and stroke, specifically targeting the phosphatidylinositol 3-kinase (PI3K) pathway. In vitro experiments with human NPCs validate these findings, showing that disruption of the CXCL12-PIK3C2A-CREB3L2 axis impairs neurogenesis. Notably, PI3K pathway activation restores neurogenesis, highlighting a potential therapeutic approach. These results suggest that CAA combined with stroke induces microvascular dysfunction and aberrant neurogenesis through this specific pathway.
Assuntos
Angiopatia Amiloide Cerebral , Hipocampo , Microvasos , Neurogênese , Transdução de Sinais , Acidente Vascular Cerebral , Animais , Angiopatia Amiloide Cerebral/patologia , Angiopatia Amiloide Cerebral/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Camundongos , Humanos , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Microvasos/patologia , Microvasos/metabolismo , Quimiocina CXCL12/metabolismo , Células-Tronco Neurais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Barreira Hematoencefálica/patologia , Barreira Hematoencefálica/metabolismo , Masculino , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologiaRESUMO
A major driver of neuronal hyperexcitability is dysfunction of K+ channels, including voltage-gated KCNQ2/3 channels. Their hyperpolarized midpoint of activation and slow activation and deactivation kinetics produce a current that regulates membrane potential and impedes repetitive firing. Inherited mutations in KCNQ2 and KCNQ3 are linked to a wide spectrum of neurodevelopmental disorders (NDDs), ranging from benign familial neonatal seizures to severe epileptic encephalopathies and autism spectrum disorders. However, the impact of these variants on the molecular mechanisms underlying KCNQ3 channel function remains poorly understood and existing treatments have significant side effects. Here, we use voltage clamp fluorometry, molecular dynamic simulations, and electrophysiology to investigate NDD-associated variants in KCNQ3 channels. We identified two distinctive mechanisms by which loss- and gain-of function NDD-associated mutations in KCNQ3 affect channel gating: one directly affects S4 movement while the other changes S4-to-pore coupling. MD simulations and electrophysiology revealed that polyunsaturated fatty acids (PUFAs) primarily target the voltage-sensing domain in its activated conformation and form a weaker interaction with the channel's pore. Consistently, two such compounds yielded partial and complete functional restoration in R227Q- and R236C-containing channels, respectively. Our results reveal the potential of PUFAs to be developed into therapies for diverse KCNQ3-based channelopathies.
Assuntos
Canal de Potássio KCNQ3 , Simulação de Dinâmica Molecular , Mutação , Transtornos do Neurodesenvolvimento , Canal de Potássio KCNQ3/genética , Canal de Potássio KCNQ3/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/tratamento farmacológico , Ativação do Canal Iônico/efeitos dos fármacos , Animais , Células HEK293 , Potenciais da Membrana/efeitos dos fármacosRESUMO
Developmental anomalies of the hearing organ, the cochlea, are diagnosed in approximately one-fourth of individuals with congenital deafness. Most patients with cochlear malformations remain etiologically undiagnosed due to insufficient knowledge about underlying genes or the inability to make conclusive interpretations of identified genetic variants. We used exome sequencing for genetic evaluation of hearing loss associated with cochlear malformations in three probands from unrelated families. We subsequently generated monoclonal induced pluripotent stem cell (iPSC) lines, bearing patient-specific knockins and knockouts using CRISPR/Cas9 to assess pathogenicity of candidate variants. We detected FGF3 (p.Arg165Gly) and GREB1L (p.Cys186Arg), variants of uncertain significance in two recognized genes for deafness, and PBXIP1(p.Trp574*) in a candidate gene. Upon differentiation of iPSCs towards inner ear organoids, we observed significant developmental aberrations in knockout lines compared to their isogenic controls. Patient-specific single nucleotide variants (SNVs) showed similar abnormalities as the knockout lines, functionally supporting their causality in the observed phenotype. Therefore, we present human inner ear organoids as a tool to rapidly validate the pathogenicity of DNA variants associated with cochlear malformations.
RESUMO
TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype-phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.
Assuntos
Estudos de Associação Genética , Perda Auditiva , Proteínas de Membrana , Serina Endopeptidases , Humanos , Feminino , Masculino , Serina Endopeptidases/genética , Adulto , Proteínas de Membrana/genética , Perda Auditiva/genética , Criança , Pessoa de Meia-Idade , Adolescente , Pré-Escolar , Genótipo , Estudos de Coortes , Fenótipo , Mutação de Sentido Incorreto , Estudos Transversais , Adulto Jovem , Estudos Retrospectivos , Idoso , Proteínas de NeoplasiasRESUMO
The ATP-binding cassette, subfamily A (ABC1), member 7 (ABCA7) gene is associated with Alzheimer's disease (AD) risk in populations of African, Asian, and European ancestry1-5. Numerous ABCA7 mutations contributing to risk have been identified, including a 44 base pair deletion (rs142076058) specific to individuals of African ancestry and predicted to cause a frameshift mutation (p.Arg578Alafs) (Cukier et al., 2016). The UMi043-A human induced pluripotent stem cell line was derived from an African American individual with AD who is heterozygous for this deletion and is a resource to further investigate ABCA7 and how this African-specific deletion may influence disease pathology.
Assuntos
Doença de Alzheimer , Linhagem Celular , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Negro ou Afro-Americano/genética , Células-Tronco Pluripotentes Induzidas/citologia , MutaçãoRESUMO
A missense variant in the tetratricopeptide repeat domain 3 (TTC3) gene (rs377155188, p.S1038C, NM_003316.4:c 0.3113C>G) was found to segregate with disease in a multigenerational family with late-onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing, and the resulting isogenic pair of iPSC lines was differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3-dimensional morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant.
Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Doença de Alzheimer/genética , Neurônios , Citoesqueleto de Actina , Transtornos de Início Tardio , Prosencéfalo , Transdução de Sinais/genética , Ubiquitina-Proteína LigasesRESUMO
A missense variant in the tetratricopeptide repeat domain 3 ( TTC3 ) gene (rs377155188, p.S1038C, NM_003316.4:c.3113C>G) was found to segregate with disease in a multigenerational family with late onset Alzheimer's disease. This variant was introduced into induced pluripotent stem cells (iPSCs) derived from a cognitively intact individual using CRISPR genome editing and the resulting isogenic pair of iPSC lines were differentiated into cortical neurons. Transcriptome analysis showed an enrichment for genes involved in axon guidance, regulation of actin cytoskeleton, and GABAergic synapse. Functional analysis showed that the TTC3 p.S1038C iPSC-derived neuronal progenitor cells had altered 3D morphology and increased migration, while the corresponding neurons had longer neurites, increased branch points, and altered expression levels of synaptic proteins. Pharmacological treatment with small molecules that target the actin cytoskeleton could revert many of these cellular phenotypes, suggesting a central role for actin in mediating the cellular phenotypes associated with the TTC3 p.S1038C variant. Highlights: The AD risk variant TTC3 p.S1038C reduces the expression levels of TTC3 The variant modifies the expression of AD specific genes BACE1 , INPP5F , and UNC5C Neurons with the variant are enriched for genes in the PI3K-Akt pathwayiPSC-derived neurons with the alteration have increased neurite length and branchingThe variant interferes with actin cytoskeleton and is ameliorated by Cytochalasin D.
RESUMO
People living with HIV (PLHIV) are at a higher risk of having cerebrocardiovascular diseases (CVD) compared to HIV negative (HIVneg) individuals. The mechanisms underlying this elevated risk remains elusive. We hypothesize that HIV infection results in modified microRNA (miR) content in plasma extracellular vesicles (EVs), which modulates the functionality of vascular repairing cells, i.e., endothelial colony-forming cells (ECFCs) in humans or lineage negative bone marrow cells (lin- BMCs) in mice, and vascular wall cells. PLHIV (N = 74) have increased atherosclerosis and fewer ECFCs than HIVneg individuals (N = 23). Plasma from PLHIV was fractionated into EVs (HIVposEVs) and plasma depleted of EVs (HIV PLdepEVs). HIVposEVs, but not HIV PLdepEVs or HIVnegEVs (EVs from HIVneg individuals), increased atherosclerosis in apoE-/- mice, which was accompanied by elevated senescence and impaired functionality of arterial cells and lin- BMCs. Small RNA-seq identified EV-miRs overrepresented in HIVposEVs, including let-7b-5p. MSC (mesenchymal stromal cell)-derived tailored EVs (TEVs) loaded with the antagomir for let-7b-5p (miRZip-let-7b) counteracted, while TEVs loaded with let-7b-5p recapitulated the effects of HIVposEVs in vivo. Lin- BMCs overexpressing Hmga2 (a let-7b-5p target gene) lacking the 3'UTR and as such is resistant to miR-mediated regulation showed protection against HIVposEVs-induced changes in lin- BMCs in vitro. Our data provide a mechanism to explain, at least in part, the increased CVD risk seen in PLHIV.
Assuntos
Aterosclerose , MicroRNA Circulante , Vesículas Extracelulares , Infecções por HIV , MicroRNAs , Humanos , Animais , Camundongos , Infecções por HIV/complicações , Infecções por HIV/genética , MicroRNAs/genética , Vesículas Extracelulares/genética , Aterosclerose/genéticaRESUMO
Cocaine abuse increases the risk of atherosclerotic cardiovascular disease (CVD) and causes acute coronary syndromes (ACS) and hypertension (HTN). Significant research has explored the role of the sympathetic nervous system mediating the cocaine effects on the cardiovascular (CV) system. However, the response of the sympathetic nervous system alone is insufficient to completely account for the CV consequences seen in cocaine users. In this study, we examined the role of microRNAs (miRNAs) in mediating the effect of cocaine on the CV system. MiRNAs regulate many important biological processes and have been associated with both response to cocaine and CV disease development. Multiple miRNAs have altered expression in the CV system (CVS) upon cocaine exposure. To understand the molecular mechanisms underlying the cocaine response in the CV system, we studied the role of miRNA-423-5p and its target Cacna2d2 in the regulation of intracellular calcium concentration and SMC contractility, a critical factor in the modulation of blood pressure (BP). We used in vivo models to evaluate BP and aortic stiffness. In vitro, cocaine treatment decreased miR-423-5p expression and increased Cacna2d2 expression, which led to elevated intracellular calcium concentrations and increased SMC contractility. Overexpression of miR-423-5p, silencing of its target Cacna2d2, and treatment with a calcium channel blocker reversed the elevated SMC contractility caused by cocaine. In contrast, suppression of miR-423-5p increased the intracellular calcium concentration and SMC contractibility. In vivo, smooth muscle-specific overexpression of miR-423-5p ameliorated the increase in BP and aortic stiffness associated with cocaine use. Thus, miR-423-5p regulates SMC contraction by modulating Cacna2d2 expression increasing intracellular calcium concentrations. Modulation of the miR-423-5p-Cacna2d2-Calcium transport pathway may represent a novel therapeutic strategy to improve cocaine-induced HTN and aortic stiffness.
Assuntos
Aterosclerose , Transtornos Relacionados ao Uso de Cocaína , Cocaína , MicroRNAs , Humanos , Cocaína/efeitos adversos , Cocaína/metabolismo , Cálcio/metabolismo , MicroRNAs/metabolismo , Aterosclerose/metabolismo , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Miócitos de Músculo Liso/metabolismo , Proliferação de Células , Canais de Cálcio/metabolismoRESUMO
INTRODUCTION: European local ancestry (ELA) surrounding apolipoprotein E (APOE) ε4 confers higher risk for Alzheimer's disease (AD) compared to African local ancestry (ALA). We demonstrated significantly higher APOE ε4 expression in ELA versus ALA in AD brains from APOE ε4/ε4 carriers. Chromatin accessibility differences could contribute to these expression changes. METHODS: We performed single nuclei assays for transposase accessible chromatin sequencing from the frontal cortex of six ALA and six ELA AD brains, homozygous for local ancestry and APOE ε4. RESULTS: Our results showed an increased chromatin accessibility at the APOE ε4 promoter area in ELA versus ALA astrocytes. This increased accessibility in ELA astrocytes extended genome wide. Genes with increased accessibility in ELA in astrocytes were enriched for synapsis, cholesterol processing, and astrocyte reactivity. DISCUSSION: Our results suggest that increased chromatin accessibility of APOE ε4 in ELA astrocytes contributes to the observed elevated APOE ε4 expression, corresponding to the increased AD risk in ELA versus ALA APOE ε4/ε4 carriers.
Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Humanos , Apolipoproteína E4/genética , Doença de Alzheimer/genética , Doença de Alzheimer/complicações , Cromatina , Heterozigoto , Expressão GênicaRESUMO
Background & Aims: Increased expression of IFN-stimulated gene 15 (ISG15) and subsequently increased ISGylation are key factors in the host response to viral infection. In this study, we sought to characterize the expression of ISG15, ISGylation, and associated enzymes at each stage of differentiation from induced pluripotent stem cells (iPSCs) to hepatocytes. Methods: To study the regulation of ISGylation, we utilized patient samples and in vitro cell culture models including iPSCs, hepatocytes-like cells, immortalized cell lines, and primary human hepatocytes. Protein/mRNA expression were measured following treatment with poly(I:C), IFNα and HCV infection. Results: When compared to HLCs, we observed several novel aspects of the ISGylation pathway in iPSCs. These include a lower baseline expression of the ISGylation-activating enzyme, UBE1L, a lack of IFN-induced expression of the ISGylation-conjugation enzyme UBE2L6, an attenuated activation of the transcription factor STAT1 and constitutive expression of SOCS1. ISGylation was observed in iPSCs following downregulation of SOCS1, which facilitated STAT1 activation and subsequently increased expression of UBE2L6. Intriguingly, HCV permissive transformed hepatoma cell lines demonstrated higher intrinsic expression of SOCS1 and weaker ISGylation following IFN treatment. SOCS1 downregulation in HCV-infected Huh 7.5.1 cells led to increased ISGylation. Conclusions: Herein, we show that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Furthermore, as iPSCs differentiate into hepatocytes, epigenetic mechanisms regulate ISGylation by modifying UBE1L and SOCS1 expression levels. Overall, this study demonstrates that the development of cell-intrinsic innate immunity during the differentiation of iPSCs to hepatocytes provides insight into cell type-specific regulation of host defense responses and related oncogenic processes. Impact and implications: To elucidate the mechanism underlying regulation of ISGylation, a key process in the innate immune response, we studied changes in ISGylation-associated genes at the different stages of differentiation from iPSCs to hepatocytes. We found that high basal levels of SOCS1 inhibit STAT1 activation and subsequently IFN-induced UBE2L6 and ISGylation in iPSCs. Importantly, epigenetic regulation of SOCS1 and subsequently ISGylation may be important factors in the development of cell type-specific host defense responses in hepatocytes that should be considered when studying chronic infections and oncogenic processes in the liver.
RESUMO
At present, the neuronal mechanisms underlying the diagnosis of autism spectrum disorder (ASD) have not been established. However, studies from human postmortem ASD brains have consistently revealed disruptions in cerebellar circuitry, specifically reductions in Purkinje cell (PC) number and size. Alterations in cerebellar circuitry would have important implications for information processing within the cerebellum and affect a wide range of human motor and non-motor behaviors. Laser capture microdissection was performed to obtain pure PC populations from a cohort of postmortem control and ASD cases and transcriptional profiles were compared. The 427 differentially expressed genes were enriched for gene ontology biological processes related to developmental organization/connectivity, extracellular matrix organization, calcium ion response, immune function and PC signaling alterations. Given the complexity of PCs and their far-ranging roles in response to sensory stimuli and motor function regulation, understanding transcriptional differences in this subset of cerebellar cells in ASD may inform on convergent pathways that impact neuronal function.
RESUMO
African descent populations have a lower Alzheimer disease risk from ApoE ε4 compared to other populations. Ancestry analysis showed that the difference in risk between African and European populations lies in the ancestral genomic background surrounding the ApoE locus (local ancestry). Identifying the mechanism(s) of this protection could lead to greater insight into the etiology of Alzheimer disease and more personalized therapeutic intervention. Our objective is to follow up the local ancestry finding and identify the genetic variants that drive this risk difference and result in a lower risk for developing Alzheimer disease in African ancestry populations. We performed association analyses using a logistic regression model with the ApoE ε4 allele as an interaction term and adjusted for genome-wide ancestry, age, and sex. Discovery analysis included imputed SNP data of 1,850 Alzheimer disease and 4,331 cognitively intact African American individuals. We performed replication analyses on 63 whole genome sequenced Alzheimer disease and 648 cognitively intact Ibadan individuals. Additionally, we reproduced results using whole-genome sequencing of 273 Alzheimer disease and 275 cognitively intact admixed Puerto Rican individuals. A further comparison was done with SNP imputation from an additional 8,463 Alzheimer disease and 11,365 cognitively intact non-Hispanic White individuals. We identified a significant interaction between the ApoE ε4 allele and the SNP rs10423769_A allele, (ß = -0.54,SE = 0.12,p-value = 7.50x10-6) in the discovery data set, and replicated this finding in Ibadan (ß = -1.32,SE = 0.52,p-value = 1.15x10-2) and Puerto Rican (ß = -1.27,SE = 0.64,p-value = 4.91x10-2) individuals. The non-Hispanic Whites analyses showed an interaction trending in the "protective" direction but failing to pass a 0.05 significance threshold (ß = -1.51,SE = 0.84,p-value = 7.26x10-2). The presence of the rs10423769_A allele reduces the odds ratio for Alzheimer disease risk from 7.2 for ApoE ε4/ε4 carriers lacking the A allele to 2.1 for ApoE ε4/ε4 carriers with at least one A allele. This locus is located approximately 2 mB upstream of the ApoE locus, in a large cluster of pregnancy specific beta-1 glycoproteins on chromosome 19 and lies within a long noncoding RNA, ENSG00000282943. This study identified a new African-ancestry specific locus that reduces the risk effect of ApoE ε4 for developing Alzheimer disease. The mechanism of the interaction with ApoEε4 is not known but suggests a novel mechanism for reducing the risk for ε4 carriers opening the possibility for potential ancestry-specific therapeutic intervention.
Assuntos
Doença de Alzheimer , Alelos , Doença de Alzheimer/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genótipo , Humanos , Nigéria , Fatores de RiscoRESUMO
We previously reported on two brothers who carry identical compound heterozygous PRKN mutations yet present with significantly different Parkinson's Disease (PD) clinical phenotypes. Juvenile cases demonstrate that PD is not necessarily an aging-associated disease. Indeed, evidence for a developmental component to PD pathogenesis is accumulating. Thus, we hypothesized that the presence of additional genetic modifiers, including genetic loci relevant to mesencephalic dopamine neuron development, could potentially contribute to the different clinical manifestations of the two brothers. We differentiated human-induced pluripotent stem cells (hiPSCs) derived from the two brothers into mesencephalic neural precursor cells and early postmitotic dopaminergic neurons and performed wholeexome sequencing and transcriptomic and metabolomic analyses. No significant differences in the expression of canonical dopamine neuron differentiation markers were observed. Yet our transcriptomic analysis revealed a significant downregulation of the expression of three neurodevelopmentally relevant cell adhesion molecules, CNTN6, CNTN4 and CHL1, in the cultures of the more severely affected brother. In addition, several HLA genes, known to play a role in neurodevelopment, were differentially regulated. The expression of EN2, a transcription factor crucial for mesencephalic dopamine neuron development, was also differentially regulated. We further identified differences in cellular processes relevant to dopamine metabolism. Lastly, wholeexome sequencing, transcriptomics and metabolomics data all revealed differences in glutathione (GSH) homeostasis, the dysregulation of which has been previously associated with PD. In summary, we identified genetic differences which could potentially, at least partially, contribute to the discordant clinical PD presentation of the two brothers.
RESUMO
Alzheimer's disease (AD) is the leading cause of dementia among older adults. SORL1, a top AD risk gene, encodes an endocytic receptor involved amyloid precursor protein (APP) trafficking and processing. Rare loss-of-function SORL1 variants are a strong genetic determinant of AD, and protein-truncating mutations have been found to be causal. We derived iPSCs from two siblings affected with early-onset AD who carry a rare protein-truncating deletion in SORL1 (c.4293delC) (Kunkle et al., 2017). The iPSC lines were characterized for pluripotency, differentiation potential, and genomic stability. These lines are a valuable resource for studying pathogenic mechanisms underlying AD.
Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana Transportadoras/genética , IrmãosRESUMO
Hearing loss is one of the most common sensory disorders. TMEM43 is expressed in cochlear glia-like supporting cells (GLSs) and is known to be associated with late-onset auditory neuropathy spectrum disorder (ANSD) and progressive hearing loss. Here, we describe the derivation of an induced pluripotent stem cell (iPSC) line from a patient lymphoblastoid cell line (LCL) carrying a single heterozygous nonsense variant (p.Arg372Ter (c.1114C > T)) in TMEM43 that leads to a truncated protein lacking the 4th transmembrane domain. This cell line can serve as a tool for disease modelling and development of therapeutic approaches to restore inner ear function.