Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(43): 30281-30292, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37849709

RESUMO

In this study, the catalytic performance of Ti3C2 MXene materials in the reaction of α-pinene isomerization was demonstrated. The influence of etching agents (HF, HF/H2SO4, and HF/HCl; weight ratios of mixed acids: 1 : 3, 1 : 4, and 1 : 5) on removing Al atoms from MAX phase, creation of an accordion-like structure typical for MXenes and catalytic activity of the produced samples have been revealed. The MXene HF obtained by MAX phase HF treatment exhibited the highest activity (conversion of α-pinene 74.65 mol%), while materials produced with the mixed acids (HF/H2SO4 and HF/HCl) showed a significant reduction in the conversion of α-pinene (on average about 28-fold). However, these last samples displayed an increase of about 10 mol% in the selectivity to the most desirable product-camphene. The high activity of MXene HF is a result of a high concentration of acid sites (11.62 mmol g-1) - the concentration of acid sites in the samples obtained by MAX phase mixed acids treatment was about 2.5-5.5 times smaller. This work proposes possible mechanisms for the α-pinene isomerization reaction on the MXene HF and on the MXene HF/H2SO4X : Y and MXene HF/HCl X : Y in connection with their structure.

2.
Chemosphere ; 340: 139865, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37598943

RESUMO

Disposable aluminum cans and plastic bottles are common wastes found in modern societies. This article shows that they can be upcycled into functional materials, such as metal-organic frameworks and hierarchical porous carbon nanomaterials for high-value applications. Through a solvothermal method, used poly(ethylene terephthalate) bottles and aluminum cans are converted into MIL-53(Al). Subsequently, the as-prepared MIL-53(Al) can be further carbonized into a nitrogen-doped (4.52 at%) hierarchical porous carbon framework. With an optical amount of urea present during the carbonization process, the carbon nanomaterial of a high specific surface area of 1324 m2 g-1 with well-defined porosity can be achieved. These features allow the nitrogen-doped hierarchical porous carbon to perform impressively as the working electrode of supercapacitors, delivering a high specific capacitance of 355 F g-1 at 0.5 A g-1 in a three-electrode cell and exhibiting a high energy density of 20.1 Wh kg-1 at a power density of 225 W kg-1, while simultaneously maintaining 88.2% capacitance retention over 10,000 cycles in two-electrode system. This work demonstrates the possibility of upcycling wastes to obtain carbon-based high-performance supercapacitors.


Assuntos
Alumínio , Carbono , Porosidade , Nitrogênio , Plásticos
3.
Nanotechnology ; 34(46)2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37567163

RESUMO

Recently, water oxidation or oxygen evolution reaction (OER) in electrocatalysis has attracted huge attention due to its prime role in water splitting, rechargeable metal-air batteries, and fuel cells. Here, we demonstrate a facile and scalable fabrication method of a rod-like structure composed of molybdenum disulfide and carbon (MoS2/C) from parent 2D MoS2. This novel composite, induced via the chemical vapor deposition (CVD) process, exhibits superior oxygen evolution performance (overpotential = 132 mV at 10 mA cm-2and Tafel slope = 55.6 mV dec-1) in an alkaline medium. Additionally, stability tests of the obtained structures at 10 mA cm-2during 10 h followed by 20 mA cm-2during 5 h and 50 mA cm-2during 2.5 h have been performed and clearly prove that MoS2/C can be successfully used as robust noble-metal-free electrocatalysts. The promoted activity of the rods is ascribed to the abundance of active surface (ECSA) of the catalyst induced due to the curvature effect during the reshaping of the composite from 2D precursor (MoS2) in the CVD process. Moreover, the presence of Fe species contributes to the observed excellent OER performance. FeOOH, Fe2O3, and Fe3O4are known to possess favorable electrocatalytic properties, including high catalytic activity and stability, which facilitate the electrocatalytic reaction. Additionally, Fe-based species like Fe7C3and FeMo2S5offer synergistic effects with MoS2, leading to improved catalytic activity and durability due to their unique electronic structure and surface properties. Additionally, turnover frequency (TOF) (58 1/s at the current density of 10 mA cm-2), as a direct indicator of intrinsic activity, indicates the efficiency of this catalyst in OER. Based onex situanalyzes (XPS, XRD, Raman) of the electrocatalyst the possible reaction mechanism is explored and discussed in great detail showing that MoS2, carbon, and iron oxide are the main active species of the reaction.

4.
J Colloid Interface Sci ; 627: 978-991, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35905584

RESUMO

Surgical face masks waste is a source of microplastics (polymer fibres) and inorganic and organic compounds potentially hazardous for aquatic organisms during degradation in water. The monthly use of face masks in the world is about 129 billion for 7.8 billion people. Therefore, in this contribution the utilization of hazardous surgical face masks waste for fabrication of carbon-based electrode materials via KOH-activation and carbonization was investigated. The micro-mesoporous materials were obtained with specific surface areas in the range of 460 - 969 m2/g and a total pore volume of 0.311 - 0.635 cm3/g. The optimal sample showed superior electrochemical performance as an electrode material in supercapacitor in the three-electrode system, attaining 651.1F/g at 0.1 Ag-1 and outstanding capacitance retention of 98 % after a test cycle involving 50'000 cycles. It should be emphasized that capacitance retention is one of the most crucial requirements for materials used as the electrodes in the supercapacitor devices. In this strategy, potentially contaminated face masks, common pandemic waste, is recycled into highly valuable carbon material which can serve in practical applications overcoming the global energy crisis. What is more, all microorganisms, including coronaviruses that may be on/in the masks, are completely inactivated during KOH-activation and carbonization.


Assuntos
Microplásticos , Plásticos , Carbono/química , Humanos , Máscaras , Polímeros , Porosidade , Água
5.
ACS Omega ; 5(44): 28730-28737, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33195926

RESUMO

Herein, we report fabrication of MoSe2 functionalized with bimetal Co/Ni particles, which shows promising electrochemical performance in oxygen and hydrogen evolution reactions (OER and HER) due to its physicochemical properties such as electronic configuration and great electrochemical stability. We propose functionalization with two transition metals, cobalt and nickel, expecting a synergic effect in electrocatalytic activity in a water splitting reaction. These electrocatalytic reactions are essential for efficient electrochemical energy storage. The thin flakes were obtained by exfoliation of bulk molybdenum diselenide. Next, after deposition of metals, precursors were carbonized. Electrochemical data reveal that the presence of Ni and Co particles boosts electrocatalyst performance, providing a great number of active sites due to their conductivity. Interestingly, the material exhibited great evolution potential and good stability in long-term tests.

6.
Materials (Basel) ; 13(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899780

RESUMO

The renewable energy technologies require electrocatalysts for reactions, such as the oxygen and/or hydrogen evolution reaction (OER/HER). They are complex electrochemical reactions that take place through the direct transfer of electrons. However, mostly they have high over-potentials and slow kinetics, that is why they require electrocatalysts to lower the over-potential of the reactions and enhance the reaction rate. The commercially used catalysts (e.g., ruthenium nanoparticles-Ru, iridium nanoparticles-Ir, and their oxides: RuO2, IrO2, platinum-Pt) contain metals that have poor stability, and are not economically worthwhile for widespread application. Here, we propose the spinel structure of nickel-cobalt oxide (NiCo2O4) fabricated to serve as electrocatalyst for OER. These structures were obtained by a facile two-step method: (1) One-pot solvothermal reaction and subsequently (2) pyrolysis or carbonization, respectively. This material exhibits novel rod-like morphology formed by tiny spheres. The presence of transition metal particles such as Co and Ni due to their conductivity and electron configurations provides a great number of active sites, which brings superior electrochemical performance in oxygen evolution and good stability in long-term tests. Therefore, it is believed that we propose interesting low-cost material that can act as a super stable catalyst in OER.

7.
Materials (Basel) ; 13(18)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899787

RESUMO

This study reveals a simple approach to recycle wasted coffee grounds into highly valuable carbon material with superior electrochemical performance. Activated carbon prepared from wasted coffee grounds has been formed via hydrothermal acidic hydrolysis followed by a KOH chemical activation at 800 ∘C. To understand the electrochemical properties of the sample, a set of characterization tools has been utilized: N2 and CO2 adsorption-desorption isotherms, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy and scanning electron microscopy. The specific surface area obtained from a Brunner-Emmett-Teller (BET) analysis reached 2906±19m2g-1. Prepared sample (designated as ACG-800KOH) was tested as electrode material in an electric double layer capacitor (EDLC) device with ionic liquid PYR13-TFSI as an electrolyte. The EDLC test was conducted at temperatures ranging from 20 to 120 ∘C. The specific material capacitance reached 178 Fg-1 measured at 20 ∘C and 50 A g-1 and was in the range 182 to 285 Fg-1 at the 20 to 120 ∘C temperature range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA