Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39201395

RESUMO

Gliomas account for 24% of all the primary brain and Central Nervous System (CNS) tumors. These tumors are diverse in cellular origin, genetic profile, and morphology but collectively have one of the most dismal prognoses of all cancers. Work is constantly underway to discover a new effective form of glioma therapy. Photodynamic therapy (PDT) may be one of them. It involves the local or systemic application of a photosensitive compound-a photosensitizer (PS)-which accumulates in the affected tissues. Photosensitizer molecules absorb light of the appropriate wavelength, initiating the activation processes leading to the formation of reactive oxygen species and the selective destruction of inappropriate cells. Research focusing on the effective use of PDT in glioma therapy is already underway with promising results. In our work, we provide detailed insights into the molecular changes in glioma after photodynamic therapy. We describe a number of molecules that may contribute to the resistance of glioma cells to PDT, such as the adenosine triphosphate (ATP)-binding cassette efflux transporter G2, glutathione, ferrochelatase, heme oxygenase, and hypoxia-inducible factor 1. We identify molecular targets that can be used to improve the photosensitizer delivery to glioma cells, such as the epithelial growth factor receptor, neuropilin-1, low-density lipoprotein receptor, and neuropeptide Y receptors. We note that PDT can increase the expression of some molecules that reduce the effectiveness of therapy, such as Vascular endothelial growth factor (VEGF), glutamate, and nitric oxide. However, the scientific literature lacks clear data on the effects of PDT on many of the molecules described, and the available reports are often contradictory. In our work, we highlight the gaps in this knowledge and point to directions for further research that may enhance the efficacy of PDT in the treatment of glioma.


Assuntos
Neoplasias Encefálicas , Resistencia a Medicamentos Antineoplásicos , Glioma , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Glioma/tratamento farmacológico , Glioma/metabolismo , Glioma/patologia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Animais , Espécies Reativas de Oxigênio/metabolismo
2.
Pharmaceuticals (Basel) ; 17(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065781

RESUMO

Photodynamic therapy (PDT) is a promising cancer treatment method that uses photosensitizing (PS) compounds to selectively destroy tumor cells using laser light. This review discusses the main advantages of PDT, such as its low invasiveness, minimal systemic toxicity and low risk of complications. Special attention is paid to photosensitizers obtained by chemical synthesis. Three generations of photosensitizers are presented, starting with the first, based on porphyrins, through the second generation, including modified porphyrins, chlorins, 5-aminolevulinic acid (ALA) and its derivative hexyl aminolevulinate (HAL), to the third generation, which is based on the use of nanotechnology to increase the selectivity of therapy. In addition, current research trends are highlighted, including the search for new photosensitizers that can overcome the limitations of existing therapies, such as heavy-atom-free nonporphyrinoid photosensitizers, antibody-drug conjugates (ADCs) or photosensitizers with a near-infrared (NIR) absorption peak. Finally, the prospects for the development of PDTs are presented, taking into account advances in nanotechnology and biomedical engineering. The references include both older and newer works. In many cases, when writing about a given group of first- or second-generation photosensitizers, older publications are used because the properties of the compounds described therein have not changed over the years. Moreover, older articles provide information that serves as an introduction to a given group of drugs.

3.
Front Oncol ; 14: 1373263, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803535

RESUMO

Cancer therapy, especially for tumors near sensitive areas, demands precise treatment. This review explores photodynamic therapy (PDT), a method leveraging photosensitizers (PS), specific wavelength light, and oxygen to target cancer effectively. Recent advancements affirm PDT's efficacy, utilizing ROS generation to induce cancer cell death. With a history spanning over decades, PDT's dynamic evolution has expanded its application across dermatology, oncology, and dentistry. This review aims to dissect PDT's principles, from its inception to contemporary medical applications, highlighting its role in modern cancer treatment strategies.

4.
Biomedicines ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38790923

RESUMO

Lipids, together with lipoprotein particles, are the cause of atherosclerosis, which is a pathology of the cardiovascular system. In addition, it affects inflammatory processes and affects the vessels and heart. In pharmaceutical answer to this, statins are considered a first-stage treatment method to block cholesterol synthesis. Many times, additional drugs are also used with this method to lower lipid concentrations in order to achieve certain values of low-density lipoprotein (LDL) cholesterol. Recent advances in photodynamic therapy (PDT) as a new cancer treatment have gained the therapy much attention as a minimally invasive and highly selective method. Photodynamic therapy has been proven more effective than chemotherapy, radiotherapy, and immunotherapy alone in numerous studies. Consequently, photodynamic therapy research has expanded in many fields of medicine due to its increased therapeutic effects and reduced side effects. Currently, PDT is the most commonly used therapy for treating age-related macular degeneration, as well as inflammatory diseases, and skin infections. The effectiveness of photodynamic therapy against a number of pathogens has also been demonstrated in various studies. Also, PDT has been used in the treatment of cardiovascular diseases, such as atherosclerosis and hyperplasia of the arterial intima. This review evaluates the effectiveness and usefulness of photodynamic therapy in cardiovascular diseases. According to the analysis, photodynamic therapy is a promising approach for treating cardiovascular diseases and may lead to new clinical trials and management standards. Our review addresses the used therapeutic strategies and also describes new therapeutic strategies to reduce the cardiovascular burden that is induced by lipids.

5.
Diagnostics (Basel) ; 14(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38473036

RESUMO

Photodynamic therapy (PDT) is increasingly used in modern medicine. It has found application in the treatment of breast cancer. The most common cancer among women is breast cancer. We collected cancer cells from the breast from the material received after surgery. We focused on tumors that were larger than 10 mm in size. Breast cancer tissues for this quantitative non-contrast magnetic resonance imaging (MRI) study could be seen macroscopically. The current study aimed to present findings on quantitative non-contrast MRI of breast cancer cells post-PDT through the evaluation of relaxation times. The aim of this work was to use and optimize a 1.5 T MRI system. MRI tests were performed using a clinical scanner, namely the OPTIMA MR360 manufactured by General Electric HealthCare. The work included analysis of T1 and T2 relaxation times. This analysis was performed using the MATLAB package (produced by MathWorks). The created application is based on medical MRI images saved in the DICOM3.0 standard. T1 and T2 measurements were subjected to the Shapiro-Wilk test, which showed that both samples belonged to a normal distribution, so a parametric t-test for dependent samples was used to test for between-sample variability. The study included 30 sections tested in 2 stages, with consistent technical parameters. For T1 measurements, 12 scans were performed with varying repetition times (TR) and a constant echo time (TE) of 3 ms. For T2 measurements, 12 scans were performed with a fixed repetition time of 10,000 ms and varying echo times. After treating samples with PpIX disodium salt and bubbling with pure oxygen, PDT irradiation was applied. The cell relaxation time after therapy was significantly shorter than the cell relaxation time before PDT. The cells were exposed to PpIX disodium salt as the administered pharmacological substance. The study showed that the therapy significantly affected tumor cells, which was confirmed by a significant reduction in tumor cell relaxation time on the MRI results.

6.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38474220

RESUMO

Cardiovascular diseases are the third most common cause of death in the world. The most common are heart attacks and stroke. Cardiovascular diseases are a global problem monitored by many centers, including the World Health Organization (WHO). Atherosclerosis is one aspect that significantly influences the development and management of cardiovascular diseases. Photodynamic therapy (PDT) is one of the therapeutic methods used for various types of inflammatory, cancerous and non-cancer diseases. Currently, it is not practiced very often in the field of cardiology. It is most often practiced and tested experimentally under in vitro experimental conditions. In clinical practice, the use of PDT is still rare. The aim of this review was to characterize the effectiveness of PDT in the treatment of cardiovascular diseases. Additionally, the most frequently used photosensitizers in cardiology are summarized.


Assuntos
Doenças Cardiovasculares , Neoplasias , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Doenças Cardiovasculares/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias/tratamento farmacológico
7.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542180

RESUMO

The origins of photodynamic therapy (PDT) date back to 1904. Since then, the amount of research proving PDT and, consequently, its applicability to various disease states has steadily increased. Currently, PDT is mainly used in oncology to destroy cancer cells. It is being worked on for possible use in other medical fields as well, including cardiology. It can be used in the prevention of restenosis, often occurring after vascular surgical interventions, for destroying atherosclerotic plaques and as a new ablative method of ectopic centers in the treatment of atrial fibrillation. The purpose of this review is to summarize the knowledge to date regarding the therapeutic potential of using PDT for various pathological conditions in cardiology. The review also focuses on the current limitations associated with the use of PDT and identifies areas where more research is needed to develop better drug regimens. Materials and methods: The study analyzed 189 medical articles. The articles came from PubMed, Frontiers, Google Scholar, Science Direct and Web of Science databases. Through the excitation of light, a photosensitizer (PS) introduced into the body, the destruction of pathological cells occurs. PTD is widely used in oncology of the central nervous system (CNS). This process is made possible by the production of free oxygen radicals (ROS) and singlet oxygen, which generate oxidative stress that destroys sensitive cancer cells. In recent years, photosensitizers have also been discovered to have a strong affinity for macrophages that fill atherosclerotic plaques, making these compounds suitable for treating atherosclerosis. By inducing apoptosis of smooth muscle cells, inactivating basic fibroblast growth factor (FGF-ß) and inhibiting endothelial cell hyperplasia, PDT can be used to prevent restenosis after surgical proceduresPDT appears to be a minimally invasive and highly effective therapeutic method, especially when combined with other therapeutic methods. Unfortunately, the small number of animal model studies and human clinical trials greatly limit the applicability of PDT on a wider scale. Current limitations, such as the depth of penetration, delivery of photosensitizer particles to the direct site of the lesion or the appropriate choice of photosensitizer in relation to the nature of the pathology, unfortunately make it impossible to replace current therapeutic approaches.


Assuntos
Cardiologia , Fotoquimioterapia , Placa Aterosclerótica , Animais , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Placa Aterosclerótica/tratamento farmacológico , Radicais Livres
8.
Biomedicines ; 12(2)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38397977

RESUMO

Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.

9.
Cancers (Basel) ; 16(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339396

RESUMO

Photodynamic therapy (PDT) has emerged as a promising modality for the treatment of various diseases. This non-invasive approach utilizes photosensitizing agents and light to selectively target and destroy abnormal cells, providing a valuable alternative to traditional treatments. Research studies have explored the application of PDT in different areas of the head. Research is focusing on a growing number of new developments and treatments for cancer. One of these methods is PDT. Photodynamic therapy is now a revolutionary, progressive method of cancer therapy. A very important feature of PDT is that cells cannot become immune to singlet oxygen. With this therapy, patients can avoid lengthy and costly surgeries. PDT therapy is referred to as a safe and highly selective therapy. These studies collectively highlight the potential of PDT as a valuable therapeutic option in treating the head area. As research in this field progresses, PDT may become increasingly integrated into the clinical management of these conditions, offering a balance between effectiveness and minimal invasiveness.

10.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396639

RESUMO

Atherosclerosis, which currently contributes to 31% of deaths globally, is of critical cardiovascular concern. Current diagnostic tools and biomarkers are limited, emphasizing the need for early detection. Lifestyle modifications and medications form the basis of treatment, and emerging therapies such as photodynamic therapy are being developed. Photodynamic therapy involves a photosensitizer selectively targeting components of atherosclerotic plaques. When activated by specific light wavelengths, it induces localized oxidative stress aiming to stabilize plaques and reduce inflammation. The key advantage lies in its selective targeting, sparing healthy tissues. While preclinical studies are encouraging, ongoing research and clinical trials are crucial for optimizing protocols and ensuring long-term safety and efficacy. The potential combination with other therapies makes photodynamic therapy a versatile and promising avenue for addressing atherosclerosis and associated cardiovascular disease. The investigations underscore the possibility of utilizing photodynamic therapy as a valuable treatment choice for atherosclerosis. As advancements in research continue, photodynamic therapy might become more seamlessly incorporated into clinical approaches for managing atherosclerosis, providing a blend of efficacy and limited invasiveness.


Assuntos
Aterosclerose , Fotoquimioterapia , Placa Aterosclerótica , Humanos , Aterosclerose/tratamento farmacológico , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Inflamação/tratamento farmacológico
11.
Front Chem ; 11: 1250621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075490

RESUMO

Cancer is a main cause of death and preferred methods of therapy depend on the type of tumor and its location. Gliomas are the most common primary intracranial tumor, accounting for 81% of malignant brain tumors. Although relatively rare, they cause significant mortality. Traditional methods include surgery, radiotherapy and chemotherapy; they also have significant associated side effects that cause difficulties related to tumor excision and recurrence. Photodynamic therapy has potentially fewer side effects, less toxicity, and is a more selective treatment, and is thus attracting increasing interest as an advanced therapeutic strategy. Photodynamic treatment of malignant glioma is considered to be a promising additional therapeutic option that is currently being extensively investigated in vitro and in vivo. This review describes the application of photodynamic therapy for treatment of brain cancer. The mechanism of photodynamic action is also described in this work as it applies to treatment of brain cancers such as glioblastoma multiforme. The pros and cons of photodynamic therapy for brain cancer are also discussed.

12.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069213

RESUMO

In this review, we delve into the realm of photodynamic therapy (PDT), an established method for combating cancer. The foundation of PDT lies in the activation of a photosensitizing agent using specific wavelengths of light, resulting in the generation of reactive oxygen species (ROS), notably singlet oxygen (1O2). We explore PDT's intricacies, emphasizing its precise targeting of cancer cells while sparing healthy tissue. We examine the pivotal role of singlet oxygen in initiating apoptosis and other cell death pathways, highlighting its potential for minimally invasive cancer treatment. Additionally, we delve into the complex interplay of cellular components, including catalase and NOX1, in defending cancer cells against PDT-induced oxidative and nitrative stress. We unveil an intriguing auto-amplifying mechanism involving secondary singlet oxygen production and catalase inactivation, offering promising avenues for enhancing PDT's effectiveness. In conclusion, our review unravels PDT's inner workings and underscores the importance of selective illumination and photosensitizer properties for achieving precision in cancer therapy. The exploration of cellular responses and interactions reveals opportunities for refining and optimizing PDT, which holds significant potential in the ongoing fight against cancer.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Oxigênio Singlete , Catalase , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias/tratamento farmacológico
13.
Life (Basel) ; 13(10)2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37895400

RESUMO

One of the inflammatory bowel diseases is Crohn's disease. Although this term has been used in the medical community since 1932, a significant increase in the number of publications occurs at the end of the 20th century and the beginning of the 21st century. Crohn's disease is a disease that cannot be fully cured. In many cases, it is chronic, i.e., recurrent. All preventive and therapeutic measures taken by doctors are aimed at inhibiting the development of the disease and minimizing the occurrence of any potential "side effects" resulting from the developing disease. One of the diagnostic methods is the qualitative and quantitative determination of metalloproteinases in inflammatory tissues and in the blood. The aim of the study was the quantitative and qualitative determination of metalloproteinases in inflammatory bowel tissues in patients diagnosed with Crohn's disease. The in vitro study was performed on surgical tissues from patients diagnosed with Crohn's disease. The results show that in inflammatory tissues the concentration of metalloproteinases -3, -7, -8, -9 was higher compared to tissues taken from the resection margin without signs of inflammation, defined as healthy. The experiment confirmed that the biochemical test, which is the determination of metalloproteinases in tissues, is a useful diagnostic tool to differentiate inflammatory from non-inflammatory tissues.

14.
Life (Basel) ; 13(10)2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37895443

RESUMO

Crohn's disease is a chronic inflammatory bowel disease that affects the ileum and/or large intestine. At the same time, it can also affect any other part of the human body, i.e., from the mouth to the anus. In Crohn's disease, the physiology and functioning of the epithelial barrier are inhibited due to the correlation of various factors, such as the environment, genetic susceptibility or intestinal microbiota. The symptoms are very troublesome and cause a significant reduction in quality of life, sometimes occurring with paralyzing permanent damage to the digestive tract, requiring enteral or parenteral nutrition throughout life. In order to make a proper and accurate diagnosis, an appropriately selected diagnostic path in a given clinical entity is necessary. Standard diagnostic methods are: laboratory examination, histopathological examination, endoscopic examination, X-ray, computed tomography, ultrasound examination and magnetic resonance imaging. Medical biology and the analysis of metalloproteinases have also proved helpful in diagnosing changes occurring as a result of Crohn's disease. Here we provide a thorough review of the latest reports on Crohn's disease and its genetic conditions, symptoms, morphology, diagnosis (including the analysis of Crohn's disease biomarkers, i.e., metalloproteinases) and treatment.

15.
Front Pharmacol ; 14: 1250699, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841921

RESUMO

Brain tumors, including glioblastoma multiforme, are currently a cause of suffering and death of tens of thousands of people worldwide. Despite advances in clinical treatment, the average patient survival time from the moment of diagnosis of glioblastoma multiforme and application of standard treatment methods such as surgical resection, radio- and chemotherapy, is less than 4 years. The continuing development of new therapeutic methods for targeting and treating brain tumors may extend life and provide greater comfort to patients. One such developing therapeutic method is photodynamic therapy. Photodynamic therapy is a progressive method of therapy used in dermatology, dentistry, ophthalmology, and has found use as an antimicrobial agent. It has also found wide application in photodiagnosis. Photodynamic therapy requires the presence of three necessary components: a clinically approved photosensitizer, oxygen and light. This paper is a review of selected literature from Pubmed and Scopus scientific databases in the field of photodynamic therapy in brain tumors with an emphasis on glioblastoma treatment.

16.
Molecules ; 28(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37687042

RESUMO

The introduction of new materials for the production of various types of constructs that can connect directly to tissues has enabled the development of such fields of science as medicine, tissue, and regenerative engineering. The implementation of these types of materials, called biomaterials, has contributed to a significant improvement in the quality of human life in terms of health. This is due to the constantly growing availability of new implants, prostheses, tools, and surgical equipment, which, thanks to their specific features such as biocompatibility, appropriate mechanical properties, ease of sterilization, and high porosity, ensure an improvement of living. Biodegradation ensures, among other things, the ideal rate of development for regenerated tissue. Current tissue engineering and regenerative medicine strategies aim to restore the function of damaged tissues. The current gold standard is autografts (using the patient's tissue to accelerate healing), but limitations such as limited procurement of certain tissues, long operative time, and donor site morbidity have warranted the search for alternative options. The use of biomaterials for this purpose is an attractive option and the number of biomaterials being developed and tested is growing rapidly.


Assuntos
Materiais Biocompatíveis , Polímeros , Humanos , Materiais Biocompatíveis/uso terapêutico , Polímeros/uso terapêutico , Medicina Regenerativa , Biodegradação Ambiental , Engenharia
17.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37762219

RESUMO

Photodynamic therapy (PDT) is a medical treatment with the use of a photosensitizing agent (PS), which, when activated by light, results in selective tissue damage with a cytotoxic effect on tumor cells. PDT leads to the induction of an acute-phase response, which results in the involvement of adrenal glucocorticoid (GC) hormones. PDT, by activating the hormonal response, affects the treatment of cancer. GC release is observed due to adrenal activity, which is driven by changes in the hypothalamic pituitary-adrenal axis triggered by stress signals emanating from the PDT treated tumor. The hormones released in this process in the context of the PDT-induced acute-phase response perform many important functions during anticancer therapy. They lead, among other things, to the systemic mobilization of neutrophils and the production of acute-phase reagents, and also control the production of immunoregulatory proteins and proteins that modulate inflammation. GCs can radically affect the activity of various inflammatory and immune cells, including the apoptosis of cancer cells. A better understanding of the modulation of GC activity could improve the outcomes of cancer patients treated with PDT.

18.
Brain Sci ; 13(9)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37759900

RESUMO

On average, there are about 300,000 new cases of brain cancer each year. Studies have shown that brain and central nervous system tumors are among the top ten causes of death. Due to the extent of this problem and the percentage of patients suffering from brain tumors, innovative therapeutic treatment methods are constantly being sought. One such innovative therapeutic method is photodynamic therapy (PDT). Photodynamic therapy is an alternative and unique technique widely used in dermatology and other fields of medicine for the treatment of oncological and nononcological lesions. Photodynamic therapy consists of the destruction of cancer cells and inducing inflammatory changes by using laser light of a specific wavelength in combination with the application of a photosensitizer. The most commonly used photosensitizers include 5-aminolevulinic acid for the enzymatic generation of protoporphyrin IX, Temoporfin-THPC, Photofrin, Hypericin and Talaporfin. This paper reviews the photosensitizers commonly used in photodynamic therapy for brain tumors. An overview of all three generations of photosensitizers is presented. Along with an indication of the limitations of the treatment of brain tumors, intraoperative photodynamic therapy and its possibilities are described as an alternative therapeutic method.

19.
Pharmaceutics ; 15(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631383

RESUMO

Three-dimensional printing technology has been used for more than three decades in many industries, including the automotive and aerospace industries. So far, the use of this technology in medicine has been limited only to 3D printing of anatomical models for educational and training purposes, which is due to the insufficient functional properties of the materials used in the process. Only recent advances in the development of innovative materials have resulted in the flourishing of the use of 3D printing in medicine and pharmacy. Currently, additive manufacturing technology is widely used in clinical fields. Rapid development can be observed in the design of implants and prostheses, the creation of biomedical models tailored to the needs of the patient and the bioprinting of tissues and living scaffolds for regenerative medicine. The purpose of this review is to characterize the most popular 3D printing techniques.

20.
Front Biosci (Landmark Ed) ; 28(7): 144, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37525921

RESUMO

In this article, we reviewed the use of photodynamic therapy (PDT) for breast cancer (BC) in animal models. These in vivo models imitate the cancer disease progression, aid diagnosis, as well as create opportunities to assess treatment during the approval process for the new drug. BC ranks first among women's cancers. Nowadays, there are many diagnostic methods and therapy options for BC but the majority of them have severe side effects. This article discusses the advantages and some disadvantages of the use of small and large animals used for BC models. A literature review showed that the majority of studies have used large animal models, and recently there has been more interest in developing BC in small animal models. BC cell lines such as MCF-7, BT-474, MDA-MB-231, and 4T1 are commercially available for two-dimensional and three-dimensional in vitro cell cultures and subcutaneous models. The purpose of this article is to discuss the performance of PDT in animal models and its further clinical implications. PDT is known to be a non-invasive therapy, which uses monochromatic light and energy to excite photosensitizers (PSs) for the generation of reactive oxygen species as the required factors. Herein, we discuss the use of five photosensitizers in BC models such as chlorin e6 (Ce6), methylene blue, indocyanine green, 5-aminolevulinic acid, and meta-tetra(hydroxyphenyl)chlorin. The database PubMed and Scopus were searched for keywords: 'photodynamic therapy', 'breast cancer', 'animal model', 'clinical studies', and 'photosensitizer(s)'. The PDT search results in animal experiments and its effect on a living organism indicate the possibility of its application in clinical trials on women with local and disseminated BC. The availability and accessibility of small and large BC animal models enable the progress and trial of cancer drugs for innovative technologies and new diagnostics and treatments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA