Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-33417559

RESUMO

In this paper, we present the design, control, and preliminary evaluation of the Symbitron exoskeleton, a lower limb modular exoskeleton developed for people with a spinal cord injury. The mechanical and electrical configuration and the controller can be personalized to accommodate differences in impairments among individuals with spinal cord injuries (SCI). In hardware, this personalization is accomplished by a modular approach that allows the reconfiguration of a lower-limb exoskeleton with ultimately eight powered series actuated (SEA) joints and high fidelity torque control. For SCI individuals with an incomplete lesion and sufficient hip control, we applied a trajectory-free neuromuscular control (NMC) strategy and used the exoskeleton in the ankle-knee configuration. For complete SCI individuals, we used a combination of a NMC and an impedance based trajectory tracking strategy with the exoskeleton in the ankle-knee-hip configuration. Results of a preliminary evaluation of the developed hardware and software showed that SCI individuals with an incomplete lesion could naturally vary their walking speed and step length and walked faster compared to walking without the device. SCI individuals with a complete lesion, who could not walk without support, were able to walk with the device and with the support of crutches that included a push-button for step initiation Our results demonstrate that an exoskeleton with modular hardware and control allows SCI individuals with limited or no lower limb function to receive tailored support and regain mobility.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal , Muletas , Humanos , Caminhada
2.
IEEE Trans Neural Syst Rehabil Eng ; 28(5): 1157-1167, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248116

RESUMO

Powered exoskeletons are among the emerging technologies claiming to assist functional ambulation. The potential to adapt robotic assistance based on specific motor abilities of incomplete spinal cord injury (iSCI) subjects, is crucial to optimize Human-Robot Interaction (HRI). Achilles, an autonomous wearable robot able to assist ankle during walking, was developed for iSCI subjects and utilizes a NeuroMuscular Controller (NMC). NMC can be used to adapt robotic assistance based on specific residual functional abilities of subjects. The main aim of this pilot study was to analyze the effects of the NMC-controlled Achilles, used as an assistive device, on chronic iSCI participants' performance, by assessing gait speed during 10-session training of robot-aided walking. Secondary aims were to assess training impact on participants' motion, clinical and functional features and to evaluate subjective perspective in terms of attitude towards technology, workload, usability and satisfaction. Results showed that 5 training sessions were necessary to significantly improve robot-aided gait speed on short paths and consequently to optimize HRI. Moreover, the training allowed participants who initially were not able to walk for 6 minutes, to improve gait endurance during Achilles-aided walking and to reduce perceived fatigue. Improvements were obtained also in gait speed during free walking, thus suggesting a potential rehabilitative impact, even if Achilles-aided walking was not faster than free walking. Participants' subjective evaluations indicated a positive experience.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal , Tornozelo , Marcha , Humanos , Projetos Piloto , Medula Espinal , Caminhada
3.
J Biol Regul Homeost Agents ; 34(5 Suppl. 3): 147-164. Technology in Medicine, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33386045

RESUMO

Powered exoskeletons (EXOs) have emerged as potential devices for Spinal Cord Injury (SCI) to support the intervention of physical therapists during therapy (rehabilitation EXOs) as well as to assist lower limb motion during the daily life (assistive EXOs). Although the ankle is considered a key joint for gait restoration after SCI, very few ankle exoskeletons were developed and tested in incomplete SCI (iSCI) population. Among those, the Achilles ankle exoskeleton is the only one embedding a Controller inspired by the neuromuscular system (NeuroMuscular Controller, NMC). In a previous study we demonstrated that a period dedicated to train iSCI subjects in using the Achilles EXO as an assistive aid, improved robot-aided walking speed and surprisingly also generated a positive trend in free walking speed on long and short distances thus suggesting a possible unexpected rehabilitation effect. To further investigate this result, a case-control longitudinal study was conducted in the present work. The aim of this study was to test the hypothesis that Achilles-aided training could improve performance of free walking of chronic iSCI people more than conventional intensity-matched gait rehabilitation. Before and after conventional and robot-aided rehabilitation a number of variables were analyzed, including spatiotemporal parameters, joint kinematics, ground reaction forces, muscle force, spasticity and its related symptoms, balance and personal experience about the training. Results showed that only the NMC-controlled Achilles training allowed participants to significantly walk faster, with a longer step length and a reduced gait cycle time. A slight force and spasticity improvements were also experienced. In terms of subjects' personal experience, Achilles training was perceived more interesting and less physically demanding than conventional rehabilitation.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal , Tornozelo , Marcha , Humanos , Estudos Longitudinais , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA