Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 16(3)2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543771

RESUMO

The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis and, especially, the taxonomic description of bacteriophages are often difficult due to the peculiarities of the evolution of bacteriophages, which often includes the horizontal transfer of genes and genomic modules. The latter is particularly pronounced for temperate bacteriophages, which are capable of integration into the bacterial chromosome. Xanthomonas phage PBR31 is a temperate bacteriophage, which has been neither described nor classified previously, that infects the plant pathogen Xanthomonas campestris pv. campestris. Genomic analysis, including phylogenetic studies, indicated the separation of phage PBR31 from known classified bacteriophages, as well as its distant relationship with other temperate bacteriophages, including the Lederbervirus group. Bioinformatic analysis of proteins revealed distinctive features of PBR31, including the presence of a protein similar to the small subunit of D-family DNA polymerase and advanced lysis machinery. Taxonomic analysis showed the possibility of assigning phage PBR31 to a new taxon, although the complete taxonomic description of Xanthomonas phage PBR31 and other related bacteriophages is complicated by the complex evolutionary history of the formation of its genome. The general biological features of the PBR31 phage were analysed for the first time. Due to its presumably temperate lifestyle, there is doubt as to whether the PBR31 phage is appropriate for phage control purposes. Bioinformatics analysis, however, revealed the presence of cell wall-degrading enzymes that can be utilised for the treatment of bacterial infections.


Assuntos
Bacteriófagos , Xanthomonas , Bacteriófagos/genética , Xanthomonas/genética , Filogenia , DNA Polimerase Dirigida por DNA/genética
2.
Plants (Basel) ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38475514

RESUMO

Many bacterial plant pathogens have a broad host range important for their life cycle. Alternate hosts from plant families other than the main (primary) host support the survival and dissemination of the pathogen population even in absence of main host plants. Metabolic peculiarities of main and alternative host plants can affect genetic diversity within and between the pathogen populations isolated from those plants. Strains of Gram-positive bacterium Curtobacterium flaccumfaciens were identified as being causal agents of bacterial spot and wilt diseases on leguminous plants, and other crop and weed plants, collected in different regions of Russia. Their biochemical properties and susceptibility to copper compounds have been found to be relatively uniform. According to conventional PCR assays, all of the isolates studied were categorised as pathovar Curtobacterim flaccumfaciens pv. flaccumfaciens, a pathogen of legumes. However, the strains demonstrated a substantial diversity in terms of virulence on several tested host plants and different phylogenetic relationships were revealed by BOX-PCR and alanine synthase gene (alaS) sequencing.

3.
Viruses ; 16(2)2024 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-38399973

RESUMO

Phages of phytopathogenic bacteria are considered to be promising agents for the biological control of bacterial diseases in plants. This paper reports on the isolation and characterisation of a new Xanthomonas campestris pv. campestris phage, Murka. Phage morphology and basic kinetic characteristics of the infection were determined, and a phylogenomic analysis was performed. The phage was able to lyse a reasonably broad range (64%, 9 of the 14 of the Xanthomonas campestris pv. campestris strains used in the study) of circulating strains of the cabbage black rot pathogen. This lytic myovirus has a DNA genome of 44,044 bp and contains 83 predicted genes. Taxonomically, it belongs to the genus Foxunavirus. This bacteriophage is promising for use as a possible means of biological control of cabbage black rot.


Assuntos
Bacteriófagos , Brassica , Xanthomonas campestris , Xanthomonas campestris/genética , Bacteriófagos/genética , Brassica/microbiologia
4.
Plant Dis ; 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471471

RESUMO

Curtobacterium flaccumfaciens pv. flaccumfaciens (H.) Collins & Jones is known as a pathogen of different legume crops, including soybean (Glycine max (L.) Merr.) (Hedges 1922; Dunleavy 1983). OEPP/EPPO (2011) considers C. flaccumfaciens pv. flaccumfaciens as present in Russia based on reports of the disease on common beans in two regions of Russia (North Caucasus and Far East) made without proper pathogen identification. During the summer of 2020 and the spring of 2021, soybean plants with tan spot disease (10-40% of plants) were reported during routine assays of several fields in Stavropol Krai (44.72°N, 43.29°E). After harvest in 2021, we inspected 48 soybean seed lots collected in different regions of Russia for the presence of C. flaccumfaciens pv. flaccumfaciens. Seed testing was performed using the OEPP/EPPO (2011) protocol. For bacteria isolation, seed extracts were spread on MSCFF agar plates (Maringoni et al. 2006). After 5 days of incubation at 28°C potential, C. flaccumfaciens pv. flaccumfaciens colonies were used for further tests on NSA and SSM agar (Tegli et al. 2017, Maringoni et al. 2016). Six seed lots produced in Stavropol, Ryazan (53.95°N, 40.62°E), Orel (52.39°N, 37.69°E) and Amur (51.31°N, 128.22°E) regions were suspect. Ten isolates (SB1 to SB4 from Stavropol, F-125-1 to F-125-3 from Ryazan, and F-30-1 to F-30-3 from Amur) were selected, and further identified by morphological, physiological, and biochemical properties, MALDI TOF MS, 16S rRNA sequences, and specific primers CffFOR2 and CffREV4 (Tegli et al. 2017). Isolates consistently formed yellow, circular, smooth colonies on agar, and were identical to C. flaccumfaciens pv. flaccumfaciens type strain DSM 20129T in diagnostic physiological properties (Tegli et al. 2017). DNA was isolated from the bacteria by the CytoSorb Kit (Sintol, Moscow). All tested strains were positive in the PCR assay (Fig. 1). 16S rRNA fragments were amplified using primers 27F/1492R (Marchesi et al. 1998) and PCR products were sequenced (Evrogen, Moscow, Russia). The obtained 16S rRNA sequences (1473 bp, Accession No. OL539808.1-OL539817.1) were 100% identical to DSM 20129T (AM410688.1) according to a BLAST NCBI search. A pathogenicity test was done by leaf-cutting with scissors wetted with inoculum (for soybeans) or by injecting 5 microliters of the bacterial suspension (108 CFU/ml) into the stem (for common beans). All ten isolates for the inoculum were grown on nutrient agar for 72 h at 28°C. Soybean cv. Kasatka plants (stage V1) were used for inoculation, and common bean (cv. Purpurnaya) plants were inoculated as well to confirm multi-host virulence. Sterile water served as a control. Ten plantlets were used as replicates for each treatment. The plants were incubated at 24°C, 80% RH, and a 14 hour light/10 hour dark cycle. Tan spots (soybean) and wilt (beans) have developed 7-21 d.p.i (Fig. 2.1-2.6). Control plants remained asymptomatic. Seed inoculation by soaking them in the same bacterial suspension repeatedly produced twisted primary root (Fig. 2.7-2.8), but typical disease symptoms on leaves developed in 4-5 weeks only. The pathogen was successfully reisolated from all infected plants and not from the controls, thus fulfilling Koch's postulates. The identity of the reisolated strains was confirmed using morphological and physiological characteristics and the DNA sequence data for the 16S rRNA. These results indicated that a causal agent of the tan spot is present on soybean in three important agricultural areas of Russia (South, Central, and the Far East). To the best of our knowledge, this is the first report of C. flaccumfaciens pv. flaccumfaciens causing a bacterial tan spot of soybean in Russia.

5.
Plants (Basel) ; 11(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36365442

RESUMO

The bacteria Pseudomonas savastanoi pv. glycinea (Coerper, 1919; Gardan et al., 1992) (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Hedges 1922) (Cff) are harmful pathogens of soybean (Glycine max). Presently, there are several strategies to control these bacteria, and the usage of environmentally friendly approaches is encouraged. In this work, purified essential oils (EOs) from 19 plant species and total aqueous and ethanolic plant extracts (PEs) from 19 plant species were tested in vitro to observe their antimicrobial activity against Psg and Cff (by agar diffusion and broth microdilution method). Tested EOs and PEs produced significant bacterial growth inhibition with technologically acceptable MIC and MBC values. Non-phytotoxic concentrations for Chinese cinnamon and Oregano essential oils and leather bergenia ethanolic extract, which previously showed the lowest MBC values, were determined. Testing of these substances with artificial infection of soybean plants has shown that the essential oils of Chinese cinnamon and oregano have the maximum efficiency against Psg and Cff. Treatment of leaves and seeds previously infected with phytopathogens with these essential oils showed that the biological effectiveness of leaf treatments was 80.6-77.5% and 86.9-54.6%, respectively, for Psg and Cff. GC-MS and GC-FID analyzes showed that the major compounds were 5-Methyl-3-methylenedihydro-2(3H)-furanone (20.32%) in leather bergenia ethanolic extract, cinnamaldehyde (84.25%) in Chinese cinnamon essential oil and carvacrol (62.32%) in oregano essential oil.

6.
Plant Dis ; 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36281013

RESUMO

In the summer of 2018, wilt and leaf spots were observed on sunflower (Helianthus annuus L.) plants in fields near Kursk (51.74°N, 36.02°E) in Russia. In the following years, incidence of this disease was 5 to 20% in the inspected fields. Marginal chlorosis on seedling leaves developed into wilt and necrosis about one week later (Fig. 1). Mature plants had leaves with blight and reduced height compared to symptomless plants. Pathogen isolation from seeds was done by the method of Tegli et al. (2002) with modifications. Bacteria from diseased plants were isolated by streaking inoculum from symptomatic tissues on nutrient dextrose agar (NDA) (Schaad et al. 1988). The plates were incubated at 30°C for 7 to 10 days. Isolates consistently formed slow-growing, yellow, circular, smooth colonies without soluble pigment. The isolated bacteria were aerobic, gram-positive, and rod-shaped. Eight strains, CF-20 to CF-26 from plants, and Curt1 and Curt3 from seeds, were identified by MALDI TOF MS analysis as Curtobacterium flaccumfaciens pv. flaccumfaciens or C. flaccumfaciens pv. poinsettiae. All strains had GENIII MicroPlate (BIOLOG) test results identical to C. flaccumfaciens pv. flaccumfaciens strain DSM20129T. Further analysis was done by specific PCR (Tegli et al. 2002) and 16S rDNA, gyrB, and atpD gene sequencing. For PCR amplification, DNA was extracted by the CitoSorb Kit (Syntol Co., Moscow). Primers 27F/1492R (16S rRNA) (Marchesi et al. 1998), 2F/6R (gyrB) (Richert et al. 2005), and aptD2F/aptD2R (Jacques et al. 2012) were used to amplify the target gene sequences. The PCR products were sequenced by Evrogen (Moscow). The 16S rRNA sequences (OL584192.1 to OL584199.1) were identical to that of C. flaccumfaciens pv. flaccumfaciens strain DSM20129T (AM410688.1; 1,477/1,477 bp). The phylogenetic tree of concatenated gyrB (560 bp) and atpD (716 bp) sequences (OL548915.1 to OL548922.1 and OL548923.1 to OL548930.1, respectively) clustered the strains from sunflower among C. flaccumfaciens pv. flaccumfaciens, C. flaccumfaciens pv. betae, and C. flaccumfaciens pv. oortii (Fig. 2) with high genetic similarity to other C. flaccumfaciens strains: 96.3 to 100% for atpD and 95 to 100% for gyrB. A pathogenicity test for each of the strains was performed by injecting 5 µl of a bacterial suspension (108 CFU/ml) grown for 72 h on NDA into the stems of five plantlets (four true leaf stage) of the sunflower cv. Tunka (Limagrain, France) and soybean cv. Kasatka (VIM, Russia). Strain DSM20129T was a positive control, while sterile water was a negative control. The plants were incubated at 24°C, 80% relative humidity, and 14-h light/day. Wilting and blight on sunflower (Fig. 3) and tan spots on soybean were observed in 15 to 20 days after inoculation for all sunflower strains and strain DSM20129T. The negative control plants were asymptomatic. The bacteria re-isolated from the inoculated plants exhibited the same morphological characteristics and 16S rDNA sequence as the original culture, thus fulfilling Koch's postulates. The presence of C. flaccumfaciens pv. flaccumfaciens in sunflower seeds indicated that the bacterium was transmitted via seed. Sunflower has been previously reported as a host for the pathogen (Harveson et al. 2015). The presence of C. flaccumfaciens pv. flaccumfaciens on beans in Russia was suggested from the disease symptoms (Nikitina and Korsakov 1978), but, to our knowledge, this is the first report of the pathogen affecting sunflower in Russia. Phytosanitary categorization placed C. flaccumfaciens pv. flaccumfaciens in the EPPO A2 list (EPPO 2011). Thus, sunflower seeds should be tested to protect pathogen-free areas from introduction of this pathogen.

7.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232343

RESUMO

Novel, closely related phages Possum and Horatius infect Pectobacterium versatile, a phytopathogen causing soft rot in potatoes and other essential plants. Their properties and genomic composition define them as N4-like bacteriophages of the genus Cbunavirus, a part of a recently formed family Schitoviridae. It is proposed that the adsorption apparatus of these phages consists of tail fibers connected to the virion through an adapter protein. Tail fibers possess an enzymatic domain. Phage Possum uses it to deacetylate O-polysaccharide on the surface of the host strain to provide viral attachment. Such an infection mechanism is supposed to be common for all Cbunavirus phages and this feature should be considered when designing cocktails for phage control of soft rot.


Assuntos
Bacteriófagos , Pectobacterium , Podoviridae , Bacteriófagos/genética , Genoma Viral , Pectobacterium/genética , Filogenia , Podoviridae/genética , Polissacarídeos
8.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142829

RESUMO

Diseases caused by the Gram-positive bacterium Curtobacteriumflaccumfaciens pv. flaccumfaciens (Cff) inflict substantial economic losses in soybean cultivation. Use of specific bacterial viruses (bacteriophages) for treatment of seeds and plants to prevent the development of bacterial infections is a promising approach for bioprotection in agriculture. Phage control has been successfully tested for a number of staple crops. However, this approach has never been applied to treat bacterial diseases of legumes caused by Cff, and no specific bacteriophages have been known to date. This paper presents detailed characteristics of the first lytic bacteriophage infecting this pathogen. Phage Ayka, related to φ29-like (Salasmaviridae) viruses, but representing a new subfamily, was shown to control the development of bacterial wilt and tan spot in vitro and in greenhouse plants.


Assuntos
Actinomycetales , Infecções Bacterianas , Bacteriófagos , Fabaceae , Actinobacteria , Bactérias , Fabaceae/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Glycine max
9.
Plants (Basel) ; 11(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35406917

RESUMO

Bacterial viruses (bacteriophages) have been considered as potential agents for the biological control of bacterial phytopathogens due to their safety and host specificity. Pseudomonas savastanoi pv. glycinea (Psg) is a causative agent of the bacterial spotting of soybean (Glycine max Willd). The harm caused by this bacterium to crop production and the development of antibiotic resistance in Psg and other pathogenic microorganisms has led to the pursuit of alternative management strategies. In this study, three Psg-specific lytic bacteriophages were isolated from soybean field soil in geographically distant regions of Russia, and their potential for protective action on plants was assessed. Sequencing of phage genomes has revealed their close relatedness and attribution to the genus Ghunavirus, subfamily Studiervirinae, family Autographiviridae. Extensive testing of the biological properties of P421, the representative of the isolated phage group, has demonstrated a relatively broad host range covering closely related Pseudomonas species and stability over wide temperature (4-40 °C) and pH (pH 4-7) ranges, as well as stability under ultraviolet irradiation for 30 min. Application of the phages to prevent, and treat, Psg infection of soybean plants confirms that they are promising as biocontrol agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA