Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(8): 3490-3498, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38270176

RESUMO

Iron(II) can show a very rich coordination chemistry with concomitant modulation of its properties as promising functional materials. Metalation of the neutral tridentate nitrogen-donor mer-coordinating ligand 2,6-bis(2-(methyl)-2H-tetrazol-5-yl)pyridine (Me2btp) with Fe(ClO4)2·6H2O through accurate solvent polarity control enables the selective crystallization of [FeHS/LS(Me2btp)2](ClO4)2·MeCN·2.75H2O (2HS/LS·MeCN·2.75H2O) as red rods, where half of the iron(II) centres resides in the low spin (LS, S = 0) state and the other half is in the high spin (HS, S = 2) state. The red rods spontaneously convert into yellow crystals once removed from the mother liquor and exposed to air due to solvent rearrangement within the crystal packing; these new crystals can be assigned to [FeHS(Me2btp)2](ClO4)2·solvent (2HS·solvent) where all the iron(II) centres are now blocked in the HS state, as confirmed by magnetic measurements. The polarity of the crystallization solvent, together with the maintenance of the crystals within the mother liquor, are pivotal for the reactivity and interconversion of different species. Indeed, upon long standing in solution, 2HS/LS·MeCN·2.75H2O converts to another form of red crystals belonging to [FeLS(Me2btp)2][FeHS(Me2btp)(MeCN)2(H2O)](ClO4)4·MeCN (2LS·3HS·MeCN), as confirmed by single crystal X-ray diffraction data. In this co-crystal, the iron(II) in 2 resides in the LS state at all temperatures while the iron(II) in 3 is blocked in the HS state. Well-formed yellow crystals could be also isolated among the red crystals of 2HS/LS·MeCN·2.75H2O, and they could be identified as the unprecedented octacoordinated species [Fe(Me2btp)2(MeCN)(H2O)](ClO4)2·H2O (1·H2O) by single-crystal X-ray diffraction. These yellow crystals are stable in the air, but slowly convert into 2LS·3HS·MeCN if kept in the mother liquor for about one week. 1·H2O can be considered the trapped intermediate in the solid state during the conversion of [FeHS(Me2btp)2]2+ into [FeHS(Me2btp)(MeCN)2(H2O)]2+ in solution, where the two tridentate ligands in the starting species can unfold to accommodate coordinated MeCN and H2O molecules, as confirmed by theoretical calculations, and eventually one of the two Me2btp is completely replaced by the solvent.

2.
Inorg Chem ; 63(4): 1803-1815, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38109502

RESUMO

Optically active functional noncentrosymmetric architectures might be achieved through the combination of molecules with inscribed optical responses and species of dedicated tectonic character. Herein, we present the new series of noncentrosymmetric cocrystal salt solvates (PPh4)3[M(CN)6](L)n·msolv (M = Cr(III), Fe(III), Co(III); L = polyresorcinol coformers, multiple hydrogen bond donors: 3,3',5,5'-tetrahydroxy-1,19-biphenyl, DiR, n = 2, or 5'-(3,5-dihydroxyphenyl)-3,3″,5,5″-tetrahydroxy-1,19:3',1″-terphenyl, TriRB, n = 1) denoted as MDiR and MTriRB, respectively. The hydrogen-bonded subnetworks {[M(CN)6]3-;Ln}∞ of dmp, neb, or dia topology are formed through structural matching between building blocks within supramolecular cis-bis(chelate)-like {[M(CN)6]3-;(H2L)2(HL)2} or tris(chelate)-like {[M(CN)6]3-;(H2L)3} fragments. The quantum-chemical analysis demonstrates the mixed electrostatic and covalent character of these interactions, with their strength clearly enhanced due to the negative charge of the hydrogen bond acceptor metal complex. The corresponding interaction energy is also dependent on the geometry of the contact and size matching of its components, rotational degree of freedom and extent of the π-electron system of the coformer, and overall fit to the molecular surroundings. Symmetry of the crystal lattices is correlated with the local symmetry of coformers and {complex;(coformer)n} hydrogen-bonded motifs characterized by the absence of the inversion center and mirror plane. All compounds reveal second-harmonic generation activity and photoluminescence diversified by individual UV-vis spectral characteristics of the components, and interesting low-frequency Raman scattering spectra within the subterahertz spectroscopic domain. Vibrational (infrared/Raman), UV-vis electronic absorption (experimental and calculated), and 57Fe Mössbauer spectra together with electrospray ionization mass spectrometry (ESI-MS) data are provided for the complete description of our systems.

3.
Chem Sci ; 14(36): 9651-9663, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37736640

RESUMO

Iron(ii) spin cross-over (SCO) compounds combine a thermally driven transition from the diamagnetic low-spin (LS) state to the paramagnetic high-spin (HS) state with a distinct change in the crystal lattice volume. Inversely, if the crystal lattice volume was modulated post-synthetically, the spin state of the compound could be tunable, resulting in the inverse effect for SCO. Herein, we demonstrate such a spin-state tuning in a breathing cyanido-bridged porous coordination polymer (PCP), where the volume change resulting from guest-induced gate-opening and -closing directly affects its spin state. We report the synthesis of a three-dimensional coordination framework {[FeII(4-CNpy)4]2[WIV(CN)8]·4H2O}n (1·4H2O; 4-CNpy = 4-cyanopyridine), which demonstrates a SCO phenomenon characterized by strong elastic frustration. This leads to a 48 K wide hysteresis loop above 140 K, but below this temperature results in a very gradual and incomplete SCO transition. 1·4H2O was activated under mild conditions, producing the nonporous {[FeII(4-CNpy)4]2[WIV(CN)8]}n (1) via a single-crystal-to-single-crystal process involving a 7.3% volume decrease, which shows complete and nonhysteretic SCO at T1/2 = 93 K. The low-temperature photoswitching behavior in 1 and 1·4H2O manifested the characteristic elasticity of the frameworks; 1 can be quantitatively converted into a metastable HS state after 638 nm light irradiation, while the photoactivation of 1·4H2O is only partial. Furthermore, nonporous 1 adsorbed CO2 molecules in a gated process, leading to {[FeII(4-CNpy)4]2[WIV(CN)8]·4CO2}n (1·4CO2), which resulted in a 15% volume increase and stabilization of the HS state in the whole temperature range down to 2 K. The demonstrated post-synthetic guest-exchange employing common gases is an efficient approach for tuning the spin state in breathing SCO-PCPs.

4.
Inorg Chem ; 62(18): 7032-7044, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37120844

RESUMO

Polynuclear molecular clusters offer an opportunity to design new hierarchical switchable materials with collective properties, based on variation of the chemical composition, size, shapes, and overall building blocks organization. In this study, we rationally designed and constructed an unprecedented series of cyanido-bridged nanoclusters realizing new undecanuclear topology: FeII[FeII(bzbpen)]6[WV(CN)8]2[WIV(CN)8]2·18MeOH (1), NaI[CoII(bzbpen)]6[WV(CN)8]3[WIV(CN)8]·28MeOH (2), NaI[NiII(bzbpen)]6[WV(CN)8]3[WIV(CN)8]·27MeOH (3), and CoII[CoII(R/S-pabh)2]6[WV(CN)8]2[WIV(CN)8]2·26MeOH [4R and 4S; bzbpen = N1,N2-dibenzyl-N1,N2-bis(pyridin-2-ylmethyl)ethane-1,2-diamine; R/S-pabh = (R/S)-N-(1-naphthyl)-1-(pyridin-2-yl)methanimine], of size up to 11 nm3, ca. 2.0 × 2.2 × 2.5 nm (1-3) and ca. 1.4 × 2.5 × 2.5 nm (4). 1, 2, and 4 exhibit site selectivity for the spin states and spin transition related to the structural speciation based on subtle exogenous and endogenous effects imposed on similar but distinguishable 3d metal-ion-coordination moieties. 1 exhibits a mid-temperature-range spin-crossover (SCO) behavior that is more advanced than the previously reported SCO clusters based on octacyanidometallates and an onset of SCO behavior close to room temperature. The latter feature is also present in 2 and 4, which suggests the emergence of CoII-centered SCO not observed in previous bimetallic cyanido-bridged CoII-WV/IV systems. In addition, reversible switching of the SCO behavior in 1 via a single-crystal-to-single-crystal transformation during desolvation was also documented.

5.
Molecules ; 27(13)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35807353

RESUMO

Studies on molecular co-crystal type materials are important in the design and preparation of easy-to-absorb drugs, non-centrosymmetric, and chiral crystals for optical performance, liquid crystals, or plastic phases. From a fundamental point of view, such studies also provide useful information on various supramolecular synthons and molecular ordering, including metric parameters, molecular matching, energetical hierarchy, and combinatorial potential, appealing to the rational design of functional materials through structure-properties-application schemes. Co-crystal salts involving anionic d-metallate coordination complexes are moderately explored (compared to the generality of co-crystals), and in this context, we present a new series of isomorphous co-crystalline salts (PPh4)3[M(CN)6](H3PG)2·2MeCN (M = Cr, 1; Fe, 2; Co 3; H3PG = phloroglucinol, 1,3,5-trihydroxobenzene). In this study, 1-3 were characterized experimentally using SC XRD, Hirshfeld analysis, ESI-MS spectrometry, vibrational IR and Raman, 57Fe Mössbauer, electronic absorption UV-Vis-NIR, and photoluminescence spectroscopies, and theoretically with density functional theory calculations. The two-dimensional square grid-like hydrogen-bond {[M(CN)6]3-;(H3PG)2}∞ network features original {[M(CN)6]3-;(H3PG)4} supramolecular cis-bis(chelate) motifs involving: (i) two double cyclic hydrogen bond synthons M(-CN⋅⋅⋅HO-)2Ar, {[M(CN)6]3-;H2PGH}, between cis-oriented cyanido ligands of [M(CN)6]3- and resorcinol-like face of H3PG, and (ii) two single hydrogen bonds M-CN⋅⋅⋅HO-Ar, {[M(CN)6]3-;HPGH2}, involving the remaining two cyanide ligands. The occurrence of the above tectonic motif is discussed with regard to the relevant data existing in the CCDC database, including the multisite H-bond binding of [M(CN)6]3- by organic species, mononuclear coordination complexes, and polynuclear complexes. The physicochemical and computational characterization discloses notable spectral modifications under the regime of an extended hydrogen bond network.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Cristalografia por Raios X , Compostos Férricos , Floroglucinol , Sais
6.
Chem Commun (Camb) ; 58(3): 391-394, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34889338

RESUMO

Mössbauer spectroscopy of iron(III) bis(dicarbollide) (1) and its adduct (2) revealed low spin FeIII in 1 and surprisingly FeII in 2. In 1, the (C2B9H11) groups rotate at room temperature with a frequency of 107 Hz, getting across the energy barrier of 24 meV. Numerical simulations showed a gradient of electric charge in 2, which may explain the FeII-like character in 2.

7.
Analyst ; 143(18): 4335-4346, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30109873

RESUMO

The work presents the complementary approach to characterize the formation of various Hb species inside isolated human RBCs exposed to NO, with a focus on the formed Hb-NO adducts. This work presents a complementary approach based on Resonance Raman Spectroscopy (RRS) supported by Blood Gas Analysis, Electron Paramagnetic Resonance Spectroscopy, UV-Vis Absorption Spectroscopy and Mössbauer Spectroscopy to characterize the formation of various Hb species, with a focus on the Hb-NO adducts formed inside isolated human RBCs exposed to NO, under the experimental conditions of low and high levels of oxygen Hb saturation. In the present work, we induced Hb-NO adducts using PAPA-NONOate, a NO-donor with known chemistry and kinetics of NO release, and confirmed the formation of Hb-NO adducts in RBCs incubated with Human Aortic Endothelial Cells (HAECs) stimulated to produce NO. Our results provide a new insight into the formation of Hb-NO adducts after the exposure of RBCs with high oxyHb content to exogenous NO with special attention to the formation of LSHbIIINO in addition to LSHbIINO and metHb (HS/LSHbIIIH2O). We also point out that reliable characterization of Hb-NO adducts requires complementary techniques. Among them, RRS, as a label-free and non-destructive tool, appears to be an important discrimination technique in the studies of Hb-NO adducts inside intact RBCs.


Assuntos
Células Endoteliais/química , Eritrócitos/química , Hemoglobinas/química , Óxido Nítrico/química , Aorta/citologia , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Endotélio Vascular/citologia , Humanos , Cinética , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA