Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 29(12): 4114-4126.e5, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31851937

RESUMO

In eukaryotes, cellular respiration is driven by mitochondrial cytochrome c oxidase (CcO), an enzyme complex that requires copper cofactors for its catalytic activity. Insertion of copper into its catalytically active subunits, including COX2, is a complex process that requires metallochaperones and redox proteins including SCO1, SCO2, and COA6, a recently discovered protein whose molecular function is unknown. To uncover the molecular mechanism by which COA6 and SCO proteins mediate copper delivery to COX2, we have solved the solution structure of COA6, which reveals a coiled-coil-helix-coiled-coil-helix domain typical of redox-active proteins found in the mitochondrial inter-membrane space. Accordingly, we demonstrate that COA6 can reduce the copper-coordinating disulfides of its client proteins, SCO1 and COX2, allowing for copper binding. Finally, our determination of the interaction surfaces and reduction potentials of COA6 and its client proteins provides a mechanism of how metallochaperone and disulfide reductase activities are coordinated to deliver copper to CcO.


Assuntos
Proteínas de Transporte/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Proteínas de Transporte/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Humanos , Espectroscopia de Ressonância Magnética , Proteínas Mitocondriais/genética , Chaperonas Moleculares/metabolismo , Mutação/genética , Ligação Proteica , Proteína Dissulfeto Redutase (Glutationa)/genética
2.
Metallomics ; 11(11): 1900-1911, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31603444

RESUMO

Nutrient iron entering the blood binds transferrin (TFN)d, which delivers iron to cells in the body. In healthy individuals, ∼30% of TFN is iron-bound while the remainder is unbound (apo-TFN). TFN saturates the plasma of individuals with iron-overload diseases such as hereditary hemochromatosis, prompting release of a poorly-defined low-molecular-mass (LMM) iron species called non-transferrin-bound iron (NTBI). An experiment was devised to directly detect NTBI in plasma of iron-deficient pigs and to assess the role of the liver which is known to bind NTBI. Catheters were surgically installed in the portal vein (PV) and either the caudal vena cava or the cranial vena cava. After the animals recovered, 57Fe II ascorbate was injected into the stomach via a feeding tube. Blood was removed through the catheters before and after injection; plasma became 57Fe-enriched after injection. 57Fe-enriched plasma was passed through a 10 kDa cutoff membrane and the flow-through solution (FTS) was subjected to size-exclusion liquid chromatography (LC). The eluent flowed into an ICP-MS where 56Fe and 57Fe were detected. Low-intensity iron peaks with masses of 400-1600 Da were observed, but none became enriched in 57Fe after injection. Rather, the injected 57Fe bound to apo-TFN. Viewed naively, this implies that nutrient-derived 57Fe in healthy mammals passes from the intestines to apo-TFN without first entering the blood as a LMM intermediate. In this case, nutrient iron exported from intestinal enterocytes of healthy individuals may quickly bind apo-TFN such that LMM iron species do not accumulate in blood plasma. Some 57Fe from the FTS may have adsorbed onto the column. In any event, the LMM iron species in plasma that eluted from the column must have originated from iron stored within the body, perhaps in macrophages - not directly from nutrient iron absorption. The liver absorbed and released LMM iron species, but the effect was modest, consistent with its role as a dynamic iron buffer. Passage through the liver also altered the distribution of different forms of TFN present in the PV.


Assuntos
Deficiências de Ferro , Ferro/sangue , Suínos/sangue , Animais , Transporte Biológico , Cromatografia , Feminino , Ferritinas/sangue , Ferro/metabolismo , Cinética , Fígado/metabolismo , Peso Molecular , Fósforo/sangue , Veia Porta/metabolismo , Padrões de Referência , Transferrina/metabolismo
3.
Metallomics ; 11(7): 1298-1309, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31210222

RESUMO

Vacuoles play major roles in the trafficking, storage, and homeostasis of metal ions in fungi and plants. In this study, 29 batches of vacuoles were isolated from Saccharomyces cerevisiae. Flow-through solutions (FTS) obtained by passing vacuolar extracts through a 10 kDa cut-off membrane were characterized for metal content using an anaerobic liquid chromatography system interfaced to an online ICP-MS. Nearly all iron, zinc, and manganese ions in these solutions were present as low-molecular-mass (LMM) complexes. Metal-detected peaks with masses between 500-1700 Da dominated; phosphorus-detected peaks generally comigrated. The distribution of metal:polyphosphate complexes was dominated by particular chain-lengths rather than a broad binomial distribution. Similarly treated synthetic FeIII polyphosphate complexes showed similar peaks. Treatment with a phosphatase disrupted the LMM metal-bound species in vacuolar FTSs. These results indicated metal:polyphosphate complexes 6-20 phosphate units in length and coordinated by 1-3 metals on average per chain. The speciation of iron in FTSs from iron-deficient cells was qualitatively similar, but intensities were lower. Under healthy conditions, nearly all copper ions in vacuolar FTSs were present as 1-2 species with masses between 4800-7800 Da. The absence of these high-mass peaks in vacuolar FTS from cup1Δ cells suggests that they were due to metallothionein, Cup1. Disrupting copper homeostasis increased the amount of LMM copper:polyphosphate complexes in vacuoles (masses between 1500-1700 Da). Potentially dangerous LMM copper species in the cytosol of metallothionein-deficient cells may traffic into vacuoles for sequestration and detoxification.


Assuntos
Complexos de Coordenação/análise , Polifosfatos/análise , Saccharomyces cerevisiae/química , Vacúolos/química , Cobre/análise , Ferro/análise , Manganês/análise , Fósforo/análise , Saccharomyces cerevisiae/citologia , Zinco/análise
4.
J Biol Chem ; 294(1): 50-62, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30337367

RESUMO

Iron is critical for virtually all organisms, yet major questions remain regarding the systems-level understanding of iron in whole cells. Here, we obtained Mössbauer and EPR spectra of Escherichia coli cells prepared under different nutrient iron concentrations, carbon sources, growth phases, and O2 concentrations to better understand their global iron content. We investigated WT cells and those lacking Fur, FtnA, Bfr, and Dps proteins. The coarse-grain iron content of exponentially growing cells consisted of iron-sulfur clusters, variable amounts of nonheme high-spin FeII species, and an unassigned residual quadrupole doublet. The iron in stationary-phase cells was dominated by magnetically ordered FeIII ions due to oxyhydroxide nanoparticles. Analysis of cytosolic extracts by size-exclusion chromatography detected by an online inductively coupled plasma mass spectrometer revealed a low-molecular-mass (LMM) FeII pool consisting of two iron complexes with masses of ∼500 (major) and ∼1300 (minor) Da. They appeared to be high-spin FeII species with mostly oxygen donor ligands, perhaps a few nitrogen donors, and probably no sulfur donors. Surprisingly, the iron content of E. coli and its reactivity with O2 were remarkably similar to those of mitochondria. In both cases, a "respiratory shield" composed of membrane-bound iron-rich respiratory complexes may protect the LMM FeII pool from reacting with O2 When exponentially growing cells transition to stationary phase, the shield deactivates as metabolic activity declines. Given the universality of oxidative phosphorylation in aerobic biology, the iron content and respiratory shield in other aerobic prokaryotes might be similar to those of E. coli and mitochondria.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Oxirredução
5.
Metallomics ; 10(6): 802-817, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29808889

RESUMO

Blood contains a poorly characterized pool of labile iron called non-transferrin-bound iron (NTBI). In patients with iron-overload diseases such as hemochromatosis, NTBI accumulates in the liver, heart, and other organs. This material is probably nonproteinaceous and low molecular mass (LMM). However, the number, concentration, mass, and chemical composition of NTBI species remain unknown despite decades of effort. Here, solutions of plasma from humans, pigs, horses, and mice were passed through a 10 kDa cutoff membrane, affording flow-through solutions (FTSs) containing ∼1 µM iron. The FTSs were subjected to size-exclusion liquid chromatography at pH 8.5, 6.5, and 4.5. Iron was detected by an online inductively-coupled-plasma mass spectrometer. LC-ICP-MS chromatograms of the FTSs exhibited 2-6 iron-containing species with apparent masses between 400 and 2500 Da. Their approximate concentrations in plasma were 10-8-10-7 M. Not every FTS sample contained every LMM iron species, indicating individual variations. The most reproducible iron species had apparent masses of 400 and 500 Da. Chromatograms of the FTSs from established hemochromatosis patients exhibited no significant differences relative to controls. The peak positions and intensities depended on column pH. Some FTS iron adsorbed onto the column, especially at higher pH. Column-adsorbing-iron coordinated apo-transferrin whereas the more tightly coordinated iron species did not. Ferric citrate standards exhibited LMM iron peaks that were similar to but not the same as those obtained in FTSs. The results indicate that the LMM iron species in healthy blood plasma is not primarily ferric citrate; however, this may be one of many contributing complexes.


Assuntos
Compostos Férricos/sangue , Ferro/sangue , Plasma/metabolismo , Transferrina/metabolismo , Animais , Feminino , Hemocromatose , Cavalos , Humanos , Camundongos , Suínos
6.
Cell Chem Biol ; 25(6): 738-748.e3, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29706592

RESUMO

In eukaryotes, mitochondria have been hypothesized to generate sulfur species required for tRNA thiolation in the cytosol, although no direct evidence thus far exists. Here we have detected these sulfur species, making use of our observation that isolated yeast cytosol alone is unable to thiolate tRNAs but can do so upon addition of mitochondria. Mitochondria were found to utilize the cysteine desulfurase Nfs1 to produce sulfur-containing species with masses ranging from 700 to 1,100 Da. Mitochondria exported these species via the Atm1 transporter in the inner membrane. Once exported to the cytosol, these sulfur species promoted cytosolic tRNA thiolation with no further requirement of mitochondria. Furthermore, we found that the Isu1/2 scaffolds but not the Ssq1 chaperone of the mitochondrial iron-sulfur cluster machinery were required for cytosolic tRNA thiolation, and thus the sulfur utilization pathway bifurcates at the Isu1/2 site for intra-organellar use in mitochondria or export to the cytosol.


Assuntos
Citosol/metabolismo , Mitocôndrias/metabolismo , RNA de Transferência/metabolismo , Compostos de Sulfidrila/metabolismo , Enxofre/metabolismo , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Citosol/química , Humanos , Mitocôndrias/química , RNA de Transferência/química , Compostos de Sulfidrila/química , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA