Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38947078

RESUMO

Background: The Borreliaceae family includes many obligate parasitic bacterial species which are etiologically associated with a myriad of zoonotic borrelioses including Lyme disease and vector-borne relapsing fevers. Infections by the Borreliaceae are difficult to detect by both direct and indirect methods, often leading to delayed and missed diagnoses. Efforts to improve diagnoses center around the development of molecular diagnostics (MDx), but due to deep tissue sequestration of the causative spirochaetes and the lack of persistent bacteremias, even MDx assays suffer from a lack of sensitivity. Additionally, the highly extensive genomic heterogeneity among isolates, even within the same species, contributes to the lack of assay sensitivity as single target assays cannot provide universal coverage. This within-species heterogeneity is partly due to differences in replicon repertoires and genomic structures that have likely arisen to support the complex Borreliaceae lifecycle in which these parasites have to survive in multiple hosts each with unique immune responses. Results: We constructed a Borreliaceae family-level pangenome and characterized the phylogenetic relationships among the constituent taxa which supports the recent taxonomy of splitting the family into at least two genera. Gene content pro les were created for the majority of the Borreliaceae replicons, providing for the first time their unambiguous molecular typing. Conclusion: Our characterization of the Borreliaceae pan-genome supports the splitting of the former Borrelia genus into two genera and provides for the phylogenetic placement of several non-species designated isolates. Mining this family-level pangenome will enable precision diagnostics corresponding to gene content-driven clinical outcomes while also providing targets for interventions.

2.
J Med Virol ; 96(1): e29348, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180275

RESUMO

Ground glass hepatocytes (GGHs) have been associated with hepatocellular carcinoma (HCC) recurrence and poor prognosis. We previously demonstrated that pre-S expression in some GGHs is resistant to current hepatitis B virus (HBV) antiviral therapies. This study aimed to investigate whether integrated HBV DNA (iDNA) is the primary HBV DNA species responsible for sustained pre-S expression in GGH after effective antiviral therapy. We characterized 10 sets of micro-dissected, formalin-fixed-paraffin-embedded, and frozen GGH, HCC, and adjacent hepatitis B surface antigen-negative stained tissues for iDNA, pre-S deletions, and the quantity of covalently closed circular DNA. Eight patients had detectable pre-S deletions, and nine had detectable iDNA. Interestingly, eight patients had integrations within the TERT and CCNE1 genes, which are known recurrent integration sites associated with HCC. Furthermore, we observed a recurrent integration in the ABCC13 gene. Additionally, we identified variations in the type and quantity of pre-S deletions within individual sets of tissues by junction-specific PacBio long-read sequencing. The data from long-read sequencing indicate that some pre-S deletions were acquired following the integration events. Our findings demonstrate that iDNA exists in GGH and can be responsible for sustained pre-S expression in GGH after effective antiviral therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Vírus da Hepatite B/genética , DNA Viral/genética , Neoplasias Hepáticas/genética , Hepatócitos , Mutação , Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA