Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(45): eadi5019, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939190

RESUMO

Climate change affects cryosphere-fed rivers and alters seasonal sediment dynamics, affecting cyclical fluvial material supply and year-round water-food-energy provisions to downstream communities. Here, we demonstrate seasonal sediment-transport regime shifts from the 1960s to 2000s in four cryosphere-fed rivers characterized by glacial, nival, pluvial, and mixed regimes, respectively. Spring sees a shift toward pluvial-dominated sediment transport due to less snowmelt and more erosive rainfall. Summer is characterized by intensified glacier meltwater pulses and pluvial events that exceptionally increase sediment fluxes. Our study highlights that the increases in hydroclimatic extremes and cryosphere degradation lead to amplified variability in fluvial fluxes and higher summer sediment peaks, which can threaten downstream river infrastructure safety and ecosystems and worsen glacial/pluvial floods. We further offer a monthly-scale sediment-availability-transport model that can reproduce such regime shifts and thus help facilitate sustainable reservoir operation and river management in wider cryospheric regions under future climate and hydrological change.

2.
J Environ Manage ; 342: 118036, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37182479

RESUMO

The archaeological record documenting human history in deserts is commonly concentrated along rivers in terraces or other landforms built by river sediment deposits. Today that record is at risk in many river valleys owing to human resource and infrastructure development activities, including the construction and operation of dams. We assessed the effects of the operations of Glen Canyon Dam - which, since its closure in 1963, has imposed drastic changes to flow, sediment supply and distribution, and riparian vegetation - on a population of 362 archaeological sites in the Colorado River corridor through Grand Canyon National Park, Arizona, USA. We leverage 50 years of evidence from aerial photographs and more than 30 years of field observations and measurements of archaeological-site topography and wind patterns to evaluate changes in the physical integrity of archaeological sites using two geomorphology-based site classification systems. We find that most archaeological sites are eroding; moreover, most are at increased risk of continuing to erode, due to six decades of operations of Glen Canyon Dam. Results show that the wind-driven (aeolian) supply of river-sourced sand, essential for covering archaeological sites and protecting them from erosion, has decreased for most sites since 1973 owing to effects of long-term dam operations on river sediment supply and riparian vegetation expansion on sandbars. Results show that the proportion of sites affected by erosion from gullies controlled by the local base-level of the Colorado River has increased since 2000. These changes to landscape processes affecting archaeological site integrity limit the ability of the National Park Service and Grand Canyon-affiliated Native American Tribes to achieve environmental management goals to maintain or improve site integrity in situ. We identify three environmental management opportunities that could be used to a greater extent to decrease the risk of erosion and increase the potential for in-situ preservation of archaeological sites. Environmental management opportunities are: 1) sediment-rich controlled river floods to increase the aeolian supply of river-sourced sand, 2) extended periods of low river flow to increase the aeolian supply of river-sourced sand, 3) the removal of riparian vegetation barriers to the aeolian transport of river-sourced sand.


Assuntos
Rios , Areia , Humanos , Colorado , Rios/química , Parques Recreativos , Arizona
3.
Nat Commun ; 13(1): 3670, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760774

RESUMO

Sand seas are vast expanses of Earth's surface containing large areas of aeolian dunes-topographic patterns manifest from above-threshold winds and a supply of loose sand. Predictions of the role of future climate change for sand-sea activity are sparse and contradictory. Here we examine the impact of climate on all of Earth's presently-unvegetated sand seas, using ensemble runs of an Earth System Model for historical and future Shared Socioeconomic Pathway (SSP) scenarios. We find that almost all of the sand seas decrease in activity relative to present-day and industrial-onset for all future SSP scenarios, largely due to more intermittent sand-transport events. An increase in event wait-times and decrease in sand transport is conducive to vegetation growth. We expect dune-forming winds will become more unimodal, and produce larger incipient wavelengths, due to weaker and more seasonal winds. Our results indicate that these qualitative changes in Earth's deserts cannot be mitigated.


Assuntos
Ecossistema , Areia , Mudança Climática , Oceanos e Mares , Vento
4.
Sci Rep ; 12(1): 3848, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264600

RESUMO

Wildfire and post-fire rainfall have resounding effects on hillslope processes and sediment yields of mountainous landscapes. Yet, it remains unclear how fire-flood sequences influence downstream coastal littoral systems. It is timely to examine terrestrial-coastal connections because climate change is increasing the frequency, size, and intensity of wildfires, altering precipitation rates, and accelerating sea-level rise; and these factors can be understood as contrasting accretionary and erosive agents for coastal systems. Here we provide new satellite-derived shoreline measurements of Big Sur, California and show how river sediment discharge significantly influenced shoreline positions during the past several decades. A 2016 wildfire followed by record precipitation increased sediment discharge in the Big Sur River and resulted in almost half of the total river sediment load of the past 50 years (~ 2.2 of ~ 4.8 Mt). Roughly 30% of this river sediment was inferred to be littoral-grade sand and was incorporated into the littoral cell, causing the widest beaches in the 37-year satellite record and spreading downcoast over timescales of years. Hence, the impact of fire-flood events on coastal sediment budgets may be substantial, and these impacts may increase with time considering projected intensification of wildfires and extreme rain events under global warming.


Assuntos
Incêndios , Incêndios Florestais , Mudança Climática , Inundações , Rios
5.
Bioscience ; 69(1): 26-39, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30647476

RESUMO

One of the desired outcomes of dam decommissioning and removal is the recovery of aquatic and riparian ecosystems. To investigate this common objective, we synthesized information from empirical studies and ecological theory into conceptual models that depict key physical and biological links driving ecological responses to removing dams. We define models for three distinct spatial domains: upstream of the former reservoir, within the reservoir, and downstream of the removed dam. Emerging from these models are response trajectories that clarify potential pathways of ecological transitions in each domain. We illustrate that the responses are controlled by multiple causal pathways and feedback loops among physical and biological components of the ecosystem, creating recovery trajectories that are dynamic and nonlinear. In most cases, short-term effects are typically followed by longer-term responses that bring ecosystems to new and frequently predictable ecological condition, which may or may not be similar to what existed prior to impoundment.

6.
Sci Rep ; 8(1): 13279, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185796

RESUMO

Sediment pulses can cause widespread, complex changes to rivers and coastal regions. Quantifying landscape response to sediment-supply changes is a long-standing problem in geomorphology, but the unanticipated nature of most sediment pulses rarely allows for detailed measurement of associated landscape processes and evolution. The intentional removal of two large dams on the Elwha River (Washington, USA) exposed ~30 Mt of impounded sediment to fluvial erosion, presenting a unique opportunity to quantify source-to-sink river and coastal responses to a massive sediment-source perturbation. Here we evaluate geomorphic evolution during and after the sediment pulse, presenting a 5-year sediment budget and morphodynamic analysis of the Elwha River and its delta. Approximately 65% of the sediment was eroded, of which only ~10% was deposited in the fluvial system. This restored fluvial supply of sand, gravel, and wood substantially changed the channel morphology. The remaining ~90% of the released sediment was transported to the coast, causing ~60 ha of delta growth. Although metrics of geomorphic change did not follow simple time-coherent paths, many signals peaked 1-2 years after the start of dam removal, indicating combined impulse and step-change disturbance responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA