Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Syst Biol ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38832843

RESUMO

A fundamental objective of evolutionary biology is to understand the origin of independently evolving species. Phylogenetic studies of species radiations rarely are able to document ongoing speciation; instead, modes of speciation, entailing geographic separation and/or ecological differentiation, are posited retrospectively. The Oreinotinus clade of Viburnum has radiated recently from north to south through the cloud forests of Mexico and Central America to the Central Andes. Our analyses support a hypothesis of incipient speciation in Oreinotinus at the southern edge of its geographic range, from central Peru to northern Argentina. Although several species and infraspecific taxa of have been recognized in this area, multiple lines of evidence and analytical approaches (including analyses of phylogenetic relationships, genetic structure, leaf morphology, and climatic envelopes) favor the recognition of just a single species, V. seemenii. We show that what has previously been recognized as V. seemenii f. minor has recently occupied the drier Tucuman-Bolivian forest region from Samaipata in Bolivia to Salta in northern Argentina. Plants in these populations form a well-supported clade with a distinctive genetic signature and they have evolved smaller, narrower leaves. We interpret this as the beginning of a within-species divergence process that has elsewhere in the neotropics resulted repeatedly in Viburnum species with a particular set of leaf ecomorphs. Specifically, the southern populations are in the process of evolving the small, glabrous, and entire leaf ecomorph that has evolved in four other montane areas of endemism. As predicted based on our studies of leaf ecomorphs in Chiapas, Mexico, these southern populations experience generally drier conditions, with large diurnal temperature fluctuations. In a central portion of the range of V. seemenii, characterized by wetter climatic conditions, we also document what may be the initial differentiation of the leaf ecomorph with larger, pubescent, and toothy leaves. The emergence of these ecomorphs thus appears to be driven by adaptation to subtly different climatic conditions in separate geographic regions, as opposed to parapatric differentiation along elevational gradients as suggested by Viburnum species distributions in other parts of the neotropics.

2.
Heredity (Edinb) ; 132(6): 296-308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637723

RESUMO

Here we use population genomic data (ddRAD-Seq) and ecological niche modeling to test biogeographic hypotheses for the divergence of the island-endemic cactus species Cereus insularis Hemsl. (Cereeae; Cactaceae) from its sister species C. fernambucensis Lem. The Cereus insularis grows in the Fernando de Noronha Islands (FNI), a Neotropical archipelago located 350 km off the Brazilian Atlantic Forest (BAF) coast. Phylogeographic reconstructions support a northward expansion by the common ancestor of C. insularis and C. fernambucensis along the mainland BAF coast, with C. insularis diverging from the widespread mainland taxon C. fernambucensis after colonizing FNI in the late Pleistocene. The morphologically distinct C. insularis is monophyletic and nested within C. fernambucensis, as expected from a progenitor-derivative speciation model. We tested alternative biogeographic and demographic hypotheses for the colonization of the FNI using Approximate Bayesian Computation. We found the greatest support for a stepping-stone path that emerged during periods of decreased sea level (the "bridge" hypothesis), in congruence with historical ecological niche modeling that shows highly suitable habitats on stepping-stone islands during glacial periods. The outlier analyses reveal signatures of selection in C. insularis, suggesting a putative role of adaptation driving rapid anagenic differentiation of this species in FNI.


Assuntos
Teorema de Bayes , Cactaceae , Ilhas , Filogenia , Filogeografia , Cactaceae/genética , Brasil , Ecossistema , Genética Populacional
3.
Ecol Evol ; 13(1): e9673, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699574

RESUMO

Obligate pollination mutualisms, in which plant and pollinator lineages depend on each other for reproduction, often exhibit high levels of species specificity. However, cases in which two or more pollinator species share a single host species (host sharing), or two or more host species share a single pollinator species (pollinator sharing), are known to occur in current ecological time. Further, evidence for host switching in evolutionary time is increasingly being recognized in these systems. The degree to which departures from strict specificity differentially affect the potential for hybridization and introgression in the associated host or pollinator is unclear. We addressed this question using genome-wide sequence data from five sympatric Panamanian free-standing fig species (Ficus subgenus Pharmacosycea, section Pharmacosycea) and their six associated fig-pollinator wasp species (Tetrapus). Two of the five fig species, F. glabrata and F. maxima, were found to regularly share pollinators. In these species, ongoing hybridization was demonstrated by the detection of several first-generation (F1) hybrid individuals, and historical introgression was indicated by phylogenetic network analysis. By contrast, although two of the pollinator species regularly share hosts, all six species were genetically distinct and deeply divergent, with no evidence for either hybridization or introgression. This pattern is consistent with results from other obligate pollination mutualisms, suggesting that, in contrast to their host plants, pollinators appear to be reproductively isolated, even when different species of pollinators mate in shared hosts.

4.
New Phytol ; 237(2): 656-671, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36210520

RESUMO

Biodiversity hotspots, such as the Caucasus mountains, provide unprecedented opportunities for understanding the evolutionary processes that shape species diversity and richness. Therefore, we investigated the evolution of Primula sect. Primula, a clade with a high degree of endemism in the Caucasus. We performed phylogenetic and network analyses of whole-genome resequencing data from the entire nuclear genome, the entire chloroplast genome, and the entire heterostyly supergene. The different characteristics of the genomic partitions and the resulting phylogenetic incongruences enabled us to disentangle evolutionary histories resulting from tokogenetic vs cladogenetic processes. We provide the first phylogeny inferred from the heterostyly supergene that includes all species of Primula sect. Primula. Our results identified recurrent admixture at deep nodes between lineages in the Caucasus as the cause of non-monophyly in Primula. Biogeographic analyses support the 'out-of-the-Caucasus' hypothesis, emphasizing the importance of this hotspot as a cradle for biodiversity. Our findings provide novel insights into causal processes of phylogenetic discordance, demonstrating that genome-wide analyses from partitions with contrasting genetic characteristics and broad geographic sampling are crucial for disentangling the diversification of species-rich clades in biodiversity hotspots.


Assuntos
Primula , Filogenia , Primula/genética , Estudo de Associação Genômica Ampla , Biodiversidade , Especiação Genética
6.
Mol Plant ; 15(8): 1384-1399, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35854658

RESUMO

Orobanchaceae is the largest family of parasitic plants, containing autotrophic and parasitic plants with all degrees of parasitism. This makes it by far the best family for studying the origin and evolution of plant parasitism. Here we provide three high-quality genomes of orobanchaceous plants, the autotrophic Lindenbergia luchunensis and the holoparasitic plants Phelipanche aegyptiaca and Orobanche cumana. Phylogenomic analysis of these three genomes together with those previously published and the transcriptomes of other orobanchaceous species created a robust phylogenetic framework for Orobanchaceae. We found that an ancient whole-genome duplication (WGD; about 73.48 million years ago), which occurred earlier than the origin of Orobanchaceae, might have contributed to the emergence of parasitism. However, no WGD events occurred in any lineage of orobanchaceous parasites except for Striga after divergence from their autotrophic common ancestor, suggesting that, in contrast with previous speculations, WGD is not associated with the emergence of holoparasitism. We detected evident convergent gene loss in all parasites within Orobanchaceae and between Orobanchaceae and dodder Cuscuta australis. The gene families in the orobanchaceous parasites showed a clear pattern of recent gains and expansions. The expanded gene families are enriched in functions related to the development of the haustorium, suggesting that recent gene family expansions may have facilitated the adaptation of orobanchaceous parasites to different hosts. This study illustrates a stepwise pattern in the evolution of parasitism in the orobanchaceous parasites and will facilitate future studies on parasitism and the control of parasitic plants in agriculture.


Assuntos
Cuscuta , Orobanchaceae , Parasitos , Striga , Animais , Genômica , Orobanchaceae/genética , Parasitos/genética , Filogenia , Striga/genética
7.
Nat Ecol Evol ; 6(9): 1318-1329, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35851851

RESUMO

Replicated radiations, in which sets of similar forms evolve repeatedly within different regions, can provide powerful insights into parallel evolution and the assembly of functional diversity within communities. Several cases have been described in animals, but in plants we lack well-documented cases of replicated radiation that combine comprehensive phylogenetic and biogeographic analyses, the delimitation of geographic areas within which a set of 'ecomorphs' evolved independently and the identification of potential underlying mechanisms. Here we document the repeated evolution of a set of leaf ecomorphs in a group of neotropical plants. The Oreinotinus lineage within the angiosperm clade Viburnum spread from Mexico to Argentina through disjunct cloud forest environments. In 9 of 11 areas of endemism, species with similar sets of leaf forms evolved in parallel. We reject gene-flow-mediated evolution of similar leaves and show, instead, that species with disparate leaf forms differ in their climatic niches, supporting ecological adaptation as the driver of parallelism. Our identification of a case of replicated radiation in plants sets the stage for comparative analyses of such phenomena across the tree of life.


Assuntos
Florestas , Fluxo Gênico , Adaptação Fisiológica , Animais , México , Filogenia
8.
Appl Plant Sci ; 10(2): e11472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495198

RESUMO

Premise: The degree of gametophyte dependence on the sporophyte life stage is a major feature that differentiates the life cycles of land plants, yet the evolutionary consequences of this difference remain poorly understood. Most evolutionary models assume organisms are either haploid or diploid for their entire lifespan, which is not appropriate for simulating plant life cycles. Here, we introduce shadie (Simulating Haploid-Diploid Evolution), a new, simple Python program for implementing simulations with biphasic life cycles and analyzing their results, using SLiM 3 as a simulation back end. Methods: We implemented evolutionary simulations under three realistic plant life cycle models supported in shadie, using either standardized or biologically realistic parameter settings to test how variation in plant life cycles and sexual systems affects patterns of genome diversity. Results: The dynamics of single beneficial mutation fixation did not vary dramatically between different models, but the patterns of spatial variation did differ, demonstrating that different life histories and model parameters affect both genetic diversity and linkage disequilibrium. The rate of linkage disequilibrium decay away from selected sites varied depending on model parameters such as cloning and selfing rates, through their impact on effective population sizes. Discussion: Evolutionary simulations are an exciting, underutilized approach in evolutionary research and education. shadie can aid plant researchers in developing null hypotheses, examining theory, and designing empirical studies, in order to investigate the role of the gametophyte life stage, and the effects of variation in plant life cycles, on plant genome evolution.

9.
Am J Bot ; 108(4): 664-679, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33818757

RESUMO

PREMISE: The Ocotea complex contains the greatest diversity of Lauraceae in the Neotropics. However, the traditional taxonomy of the group has relied on only three main floral characters, and previous molecular analyses have used only a few markers and provided limited support for relationships among the major clades. This lack of useful data has hindered the development of a comprehensive classification, as well as studies of character evolution. METHODS: We used RAD-seq data to infer the phylogenetic relationships of 149 species in the Ocotea complex, generating a reference-based assembly using the Persea americana genome. The results provide the basis for a phylogenetic classification that reflects our current molecular knowledge and for analyses of the evolution of breeding system, stamen number, and number of anther locules. RESULTS: We recovered a well-supported tree that demonstrates the paraphyly of Licaria, Aniba, and Ocotea and clarifies the relationships of Umbellularia, Phyllostemonodaphne, and the Old World species. To begin the development of a new classification and to facilitate precise communication, we also provide phylogenetic definitions for seven major clades. Our ancestral reconstructions show multiple origins for the three floral characters that have routinely been used in Lauraceae systematics, suggesting that these be used with caution in the future. CONCLUSIONS: This study advances our understanding of phylogenetic relationships and character evolution in a taxonomically difficult group using RAD-seq data. Our new phylogenetic names will facilitate unambiguous communication as studies of the Ocotea complex progress.


Assuntos
Ocotea , Evolução Molecular , Filogenia , Melhoramento Vegetal , Análise de Sequência de DNA
10.
Syst Biol ; 70(1): 67-85, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267945

RESUMO

Phylogeny, molecular sequences, fossils, biogeography, and biome occupancy are all lines of evidence that reflect the singular evolutionary history of a clade, but they are most often studied separately, by first inferring a fossil-dated molecular phylogeny, then mapping on ancestral ranges and biomes inferred from extant species. Here we jointly model the evolution of biogeographic ranges, biome affinities, and molecular sequences, while incorporating fossils to estimate a dated phylogeny for all of the 163 extant species of the woody plant clade Viburnum (Adoxaceae) that we currently recognize in our ongoing worldwide monographic treatment of the group. Our analyses indicate that while the major Viburnum lineages evolved in the Eocene, the majority of extant species originated since the Miocene. Viburnum radiated first in Asia, in warm, broad-leaved evergreen (lucidophyllous) forests. Within Asia, we infer several early shifts into more tropical forests, and multiple shifts into forests that experience prolonged freezing. From Asia, we infer two early movements into the New World. These two lineages probably first occupied warm temperate forests and adapted later to spreading cold climates. One of these lineages (Porphyrotinus) occupied cloud forests and moved south through the mountains of the Neotropics. Several other movements into North America took place more recently, facilitated by prior adaptations to freezing in the Old World. We also infer four disjunctions between Asia and Europe: the Tinus lineage is the oldest and probably occupied warm forests when it spread, whereas the other three were more recent and in cold-adapted lineages. These results variously contradict published accounts, especially the view that Viburnum radiated initially in cold forests and, accordingly, maintained vessel elements with scalariform perforations. We explored how the location and biome assignments of fossils affected our inference of ancestral areas and biome states. Our results are sensitive to, but not entirely dependent upon, the inclusion of fossil biome data. It will be critical to take advantage of all available lines of evidence to decipher events in the distant past. The joint estimation approach developed here provides cautious hope even when fossil evidence is limited. [Biogeography; biome; combined evidence; fossil pollen; phylogeny; Viburnum.].


Assuntos
Viburnum , Ecossistema , Florestas , Fósseis , Filogenia , Filogeografia
11.
Syst Biol ; 70(4): 756-773, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33057686

RESUMO

Rapid evolutionary radiations are among the most challenging phylogenetic problems, wherein different types of data (e.g., morphology and molecular) or genetic markers (e.g., nuclear and organelle) often yield inconsistent results. The tribe Arundinarieae, that is, the temperate bamboos, is a clade of tetraploid originated 22 Ma and subsequently radiated in East Asia. Previous studies of Arundinarieae have found conflicting relationships and/or low support. Here, we obtain nuclear markers from ddRAD data for 213 Arundinarieae taxa and parallel sampling of chloroplast genomes from genome skimming for 147 taxa. We first assess the feasibility of using ddRAD-seq data for phylogenetic estimates of paleopolyploid and rapidly radiated lineages, optimize clustering thresholds, and analysis workflow for orthology identification. Reference-based ddRAD data assembly approaches perform well and yield strongly supported relationships that are generally concordant with morphology-based taxonomy. We recover five major lineages, two of which are notable (the pachymorph and leptomorph lineages), in that they correspond with distinct rhizome morphologies. By contrast, the phylogeny from chloroplast genomes differed significantly. Based on multiple lines of evidence, the ddRAD tree is favored as the best species tree estimation for temperate bamboos. Using a time-calibrated ddRAD tree, we find that Arundinarieae diversified rapidly around the mid-Miocene corresponding with intensification of the East Asian monsoon and the evolution of key innovations including the leptomorph rhizomes. Our results provide a highly resolved phylogeny of Arundinarieae, shed new light on the radiation and reticulate evolutionary history of this tribe, and provide an empirical example for the study of recalcitrant plant radiations. [Arundinarieae; ddRAD; paleopolyploid; genome skimming; rapid diversification; incongruence.].


Assuntos
Genoma de Cloroplastos , Ásia Oriental , Marcadores Genéticos , Filogenia , Poaceae/genética
12.
Mol Phylogenet Evol ; 151: 106896, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562821

RESUMO

The reconstruction of relationships within recently radiated groups is challenging even when massive amounts of sequencing data are available. The use of restriction site-associated DNA sequencing (RAD-Seq) to this end is promising. Here, we assessed the performance of RAD-Seq to infer the species-level phylogeny of the rapidly radiating genus Cereus (Cactaceae). To examine how the amount of genomic data affects resolution in this group, we used datasets and implemented different analyses. We sampled 52 individuals of Cereus, representing 18 of the 25 species currently recognized, plus members of the closely allied genera Cipocereus and Praecereus, and other 11 Cactaceae genera as outgroups. Three scenarios of permissiveness to missing data were carried out in iPyRAD, assembling datasets with 30% (333 loci), 45% (1440 loci), and 70% (6141 loci) of missing data. For each dataset, Maximum Likelihood (ML) trees were generated using two supermatrices, i.e., only SNPs and SNPs plus invariant sites. Accuracy and resolution were improved when the dataset with the highest number of loci was used (6141 loci), despite the high percentage of missing data included (70%). Coalescent trees estimated using SVDQuartets and ASTRAL are similar to those obtained by the ML reconstructions. Overall, we reconstruct a well-supported phylogeny of Cereus, which is resolved as monophyletic and composed of four main clades with high support in their internal relationships. Our findings also provide insights into the impact of missing data for phylogeny reconstruction using RAD loci.


Assuntos
Evolução Biológica , Cactaceae/genética , Genoma de Planta , Análise de Sequência de DNA , Sequência de Bases , Bases de Dados Genéticas , Loci Gênicos , Especiação Genética , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
13.
Bioinformatics ; 36(14): 4193-4196, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32399564

RESUMO

SUMMARY: ipcoal is a free and open source Python package for simulating and analyzing genealogies and sequences. It automates the task of describing complex demographic models (e.g. with divergence times, effective population sizes, migration events) to the msprime coalescent simulator by parsing a user-supplied species tree or network. Genealogies, sequences and metadata are returned in tabular format allowing for easy downstream analyses. ipcoal includes phylogenetic inference tools to automate gene tree inference from simulated sequence data, and visualization tools for analyzing results and verifying model accuracy. The ipcoal package is a powerful tool for posterior predictive data analysis, for methods validation and for teaching coalescent methods in an interactive and visual environment. AVAILABILITY AND IMPLEMENTATION: Source code is available from the GitHub repository (https://github.com/pmckenz1/ipcoal/) and is distributed for packaged installation with conda. Complete documentation and interactive notebooks prepared for teaching purposes, including an empirical example, are available at https://ipcoal.readthedocs.io/. CONTACT: p.mckenzie@columbia.edu.


Assuntos
Metadados , Software , Documentação , Filogenia
14.
Bioinformatics ; 36(8): 2592-2594, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31904816

RESUMO

SUMMARY: ipyrad is a free and open source tool for assembling and analyzing restriction site-associated DNA sequence datasets using de novo and/or reference-based approaches. It is designed to be massively scalable to hundreds of taxa and thousands of samples, and can be efficiently parallelized on high performance computing clusters. It is available both as a command line interface and as a Python package with an application programming interface, the latter of which can be used interactively to write complex, reproducible scripts and implement a suite of downstream analysis tools. AVAILABILITY AND IMPLEMENTATION: ipyrad is a free and open source program written in Python. Source code is available from the GitHub repository (https://github.com/dereneaton/ipyrad/), and Linux and MacOS installs are distributed through the conda package manager. Complete documentation, including numerous tutorials, and Jupyter notebooks demonstrating example assemblies and applications of downstream analysis tools are available online: https://ipyrad.readthedocs.io/.


Assuntos
Documentação , Software
15.
Front Plant Sci ; 10: 1074, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31608076

RESUMO

Hawaiian Melicope are one of the major adaptive radiations of the Hawaiian Islands comprising 54 endemic species. The lineage is monophyletic with an estimated crown age predating the rise of the current high islands. Phylogenetic inference based on Sanger sequencing has not been sufficient to resolve species or deeper level relationships. Here, we apply restriction site-associated DNA sequencing (RAD-seq) to the lineage to infer phylogenetic relationships. We employ Quartet Sampling to assess information content and statistical support, and to quantify discordance as well as partitioned ABBA-BABA tests to uncover evidence of introgression. Our new results drastically improved resolution of relationships within Hawaiian Melicope. The lineage is divided into five fully supported main clades, two of which correspond to morphologically circumscribed infrageneric groups. We provide evidence for both ancestral and current hybridization events. We confirm the necessity for a taxonomic revision of the Melicope section Pelea, as well as a re-evaluation of several species complexes by combining genomic and morphological data.

16.
Evolution ; 73(11): 2295-2311, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31339553

RESUMO

The fig and pollinator wasp obligate mutualism is diverse (∼750 described species), ecologically important, and ancient (∼80 Ma). Once thought to be an example of strict one-to-one cospeciation, current thinking suggests genera of pollinator wasps codiversify with corresponding sections of figs, but the degree to which cospeciation or other processes contribute to the association at finer scales is unclear. Here, we use genome-wide sequence data from a community of Panamanian strangler figs and associated wasp pollinators to estimate the relative contributions of four evolutionary processes generating cophylogenetic patterns in this mutualism: cospeciation, host switching, pollinator speciation, and pollinator extinction. Using a model-based approach adapted from the study of gene family evolution, our results demonstrate the importance of host switching of pollinator wasps at this fine phylogenetic and regional scale. Although we estimate a modest amount of cospeciation, simulations reveal the number of putative cospeciation events to be consistent with what would be expected by chance. Additionally, model selection tests identify host switching as a critical parameter for explaining cophylogenetic patterns in this system. Our study demonstrates a promising approach through which the history of evolutionary association between interacting lineages can be rigorously modeled and tested in a probabilistic phylogenetic framework.


Assuntos
Coevolução Biológica , Ficus/genética , Variação Genética , Polinização , Vespas/genética , Animais , Ecossistema , Ficus/fisiologia , Modelos Genéticos , Vespas/fisiologia
17.
Ann Bot ; 123(2): 381-390, 2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29982369

RESUMO

Background and Aims: Enlarged sterile flowers on the periphery of inflorescences increase the attractiveness of floral displays, and previous studies have generally demonstrated that these have positive effects on insect visitation and/or reproductive success. However, experiments have not specifically been designed to examine the benefits of sterile flowers under conditions that reflect the early stages in their evolution, i.e. when plants that produce sterile flowers are at low frequency. Methods: Over three years, three experiments were performed in natural populations of Viburnum lantanoides, which produces sterile marginal flowers (SMFs). The first experiment established that fruit production in V. lantanoides increases with the receipt of outcross pollen. The second tested the role of SMFs under extant conditions, comparing fruit production in two populations composed entirely of intact plants or entirely of plants with the SMFs removed. The third was designed to mimic the presumed context in which SMFs first evolved; here, SMFs were removed from all but a few plants in a population, and rates of insect visitation and fruit set were compared between plants with intact and denuded SMFs. Key Results: In comparing whole populations, the presence of SMFs nearly doubled fruit set. Under simulated 'ancestral' conditions within a population, plants with intact SMFs received double the insect visits and produced significantly more fruits than denuded plants. There was no significant effect of the number of inflorescences or fertile flowers on insect visitation or fruit set, indicating that the presence of SMFs accounted for these differences. Conclusions: The presence of SMFs significantly increased pollinator attraction and female reproductive success both in contemporary and simulated ancestral contexts, indicating that stabilizing selection is responsible for their maintenance, and directional selection likely drove their evolution when they first appeared. This study demonstrates a novel approach to incorporating historically relevant scenarios into experimental studies of floral evolution.


Assuntos
Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Polinização , Seleção Genética , Viburnum/genética , Animais , Evolução Biológica , Autofertilização , Viburnum/crescimento & desenvolvimento
18.
Syst Biol ; 68(2): 187-203, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521050

RESUMO

Species are the starting point for most studies of ecology and evolution, but the proper circumscription of species can be extremely difficult in morphologically variable lineages, and there are still few convincing examples of molecularly informed species delimitation in plants. Here, we focus on the Viburnum nudum complex, a highly variable clade that is widely distributed in eastern North America. Taxonomic treatments have mostly divided this complex into northern (V. nudum var. cassinoides) and southern (V. nudum var. nudum) entities, but additional names have been proposed. We used multiple lines of evidence, including RADseq, morphological, and geographic data, to test how many independently evolving lineages exist within the V. nudum complex. Genetic clustering and phylogenetic methods revealed three distinct groups-one lineage that is highly divergent, and two others that are recently diverged and morphologically similar. A combination of evidence that includes reciprocal monophyly, lack of introgression, and discrete rather than continuous patterns of variation supports the recognition of all three lineages as separate species. These results identify a surprising case of cryptic diversity in which two broadly sympatric species have consistently been lumped in taxonomic treatments. The clarity of our findings is directly related to the dense sampling and high-quality genetic data in this study. We argue that there is a critical need for carefully sampled and integrative species delimitation studies to clarify species boundaries even in well-known plant lineages. Studies following the model that we have developed here are likely to identify many more cryptic lineages and will fundamentally improve our understanding of plant speciation and patterns of species richness.


Assuntos
DNA de Plantas/genética , Viburnum/classificação , Viburnum/genética , DNA de Plantas/química , Especiação Genética , Filogenia , Mapeamento por Restrição , Análise de Sequência de DNA , Especificidade da Espécie , Estados Unidos , Viburnum/anatomia & histologia
19.
J Hered ; 109(6): 611-619, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-29986032

RESUMO

Genome-wide assessments allow for fuller characterization of genetic diversity, finer-scale population delineation, and better detection of demographically significant units to guide conservation compared with those based on "traditional" markers. Galapagos giant tortoises (Chelonoidis spp.) have long provided a case study for how evolutionary genetics may be applied to advance species conservation. Ongoing efforts to bolster tortoise populations, which have declined by 90%, have been informed by analyses of mitochondrial DNA sequence and microsatellite genotypic data, but could benefit from genome-wide markers. Taking this next step, we used double-digest restriction-site associated DNA sequencing to collect genotypic data at >26000 single nucleotide polymorphisms (SNPs) for 117 individuals representing all recognized extant Galapagos giant tortoise species. We then quantified genetic diversity, population structure, and compared results to estimates from mitochondrial DNA and microsatellite loci. Our analyses detected 12 genetic lineages concordant with the 11 named species as well as previously described structure within one species, C. becki. Furthermore, the SNPs provided increased resolution, detecting admixture in 4 individuals. SNP-based estimates of diversity and differentiation were significantly correlated with those derived from nuclear microsatellite loci and mitochondrial DNA sequences. The SNP toolkit presented here will serve as a resource for advancing efforts to understand tortoise evolution, species radiations, and aid conservation of the Galapagos tortoise species complex.


Assuntos
Especiação Genética , Variação Genética , Tartarugas/genética , Animais , DNA Mitocondrial , Genoma , Repetições de Microssatélites , Polimorfismo de Nucleotídeo Único , Tartarugas/classificação
20.
PLoS One ; 13(6): e0198882, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29906281

RESUMO

The challenges associated with sampling rare species or populations can limit our ability to make accurate and informed estimates of biodiversity for clades or ecosystems. This may be particularly true for tropical trees, which tend to be poorly sampled, and are thought to harbor extensive cryptic diversity. Here, we integrate genomics, morphology, and geography to estimate the number of species in a clade of dioecious tropical trees (Canarium L.; Burseraceae) endemic to Madagascar, for which previous taxonomic treatments have recognized between one and 33 species. By sampling genomic data from even a limited number of individuals per taxon, we were able to clearly reject both previous hypotheses, and support instead an intermediate number of taxa. We recognize at least six distinct clades based on genetic structure and species delimitation analyses that correspond clearly with geographic and discrete morphological differences. Two widespread clades co-occur broadly throughout eastern wet forests, one clade is endemic to western dry forests, and several slightly admixed clades are more narrowly distributed in mountainous regions in the north. Multiple previously described taxa were recovered as paraphyletic in our analyses, some of which were associated with admixed individuals, suggesting that hybridization contributes to taxonomic difficulties in Canarium. An improved understanding of Canarium species diversity has important implications for conservation efforts and understanding the origins of diversity in Madagascar. Our study shows that even limited genomic sampling, when combined with geography and morphology, can greatly improve estimates of species diversity for difficult tropical clades.


Assuntos
Biodiversidade , Burseraceae/genética , Clima Tropical , Burseraceae/classificação , Florestas , Genômica/métodos , Geografia , Madagáscar , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA