RESUMO
During the COVID-19 pandemic, contact tracing was used to identify individuals who had been in contact with a confirmed case so that these contacted individuals could be tested and quarantined to prevent further spread of the SARS-CoV-2 virus. Many countries developed mobile apps to find these contacted individuals faster. We evaluate the epidemiological effectiveness of the Dutch app CoronaMelder, where we measure effectiveness as the reduction of the reproduction number R. To this end, we use a simulation model of SARS-CoV-2 spread and contact tracing, informed by data collected during the study period (December 2020 - March 2021) in the Netherlands. We show that the tracing app caused a clear but small reduction of the reproduction number, and the magnitude of the effect was found to be robust in sensitivity analyses. The app could have been more effective if more people had used it, and if notification of contacts could have been done directly by the user and thus reducing the time intervals between symptom onset and reporting of contacts. The model has two innovative aspects: i) it accounts for the clustered nature of social networks and ii) cases can alert their contacts informally without involvement of health authorities or the tracing app.
Assuntos
COVID-19 , Aplicativos Móveis , Humanos , COVID-19/epidemiologia , Busca de Comunicante , SARS-CoV-2 , Pandemias/prevenção & controleRESUMO
Digital contact tracing and notification were initially hailed as promising strategies to combat SARS-CoV-2; however, in most jurisdictions, they did not live up to their promise. To avert a given transmission event, both parties must have adopted the technology, it must detect the contact, the primary case must be promptly diagnosed, notifications must be triggered, and the secondary case must change their behavior to avoid the focal tertiary transmission event. If we approximate these as independent events, achieving a 26% reduction in the effective reproduction number Rt would require an 80% success rate at each of these 6 points of failure. Here, we review the 6 failure rates experienced by a variety of digital contact tracing and contact notification schemes, including Singapore's TraceTogether, India's Aarogya Setu, and leading implementations of the Google Apple Exposure Notification system. This leads to a number of recommendations, for example, that the narrative be framed in terms of user autonomy rather than user privacy, and that tracing/notification apps be multifunctional and integrated with testing, manual contact tracing, and the gathering of critical scientific data.
Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Busca de Comunicante , SARS-CoV-2 , Número Básico de Reprodução , PrivacidadeRESUMO
The Dutch government introduced the CoronaMelder smartphone application for digital contact tracing (DCT) to complement manual contact tracing (MCT) by Public Health Services (PHS) during the 2020-2022 SARS-CoV-2 epidemic. Modelling studies showed great potential but empirical evidence of DCT and MCT impact is scarce. We determined reasons for testing, and mean exposure-testing intervals by reason for testing, using routine data from PHS Amsterdam (1 December 2020 to 31 May 2021) and data from two SARS-CoV-2 rapid diagnostic test accuracy studies at other PHS sites in the Netherlands (14 December 2020 to 18 June 2021). Throughout the study periods, notification of DCT-identified contacts was via PHS contact-tracers, and self-testing was not yet widely available. The most commonly reported reason for testing was having symptoms. In asymptomatic individuals, it was having been warned by an index case. Only around 2% and 2-5% of all tests took place after DCT or MCT notification, respectively. About 20-36% of those who had received a DCT or MCT notification had symptoms at the time of test request. Test positivity after a DCT notification was significantly lower, and exposure-test intervals after a DCT or MCT notification were longer, than for the above-mentioned other reasons for testing. Our data suggest that the impact of DCT and MCT on the SARS-CoV-2 epidemic in the Netherlands was limited. However, DCT impact might be enlarged if app use coverage is improved, contact-tracers are eliminated from the digital notification process to minimise delays, and DCT is combined with self-testing.
RESUMO
BACKGROUND: During the COVID-19 pandemic, there was limited adoption of contact-tracing apps (CTAs). Adoption was particularly low among vulnerable people (eg, people with a low socioeconomic position or of older age), while this part of the population tends to have lesser access to information and communication technology and is more vulnerable to the COVID-19 virus. OBJECTIVE: This study aims to understand the cause of this lagged adoption of CTAs in order to facilitate adoption and find indications to make public health apps more accessible and reduce health disparities. METHODS: Because several psychosocial variables were found to be predictive of CTA adoption, data from the Dutch CTA CoronaMelder (CM) were analyzed using cluster analysis. We examined whether subgroups could be formed based on 6 psychosocial perceptions (ie, trust in the government, beliefs about personal data, social norms, perceived personal and societal benefits, risk perceptions, and self-efficacy) of (non)users concerning CM in order to examine how these clusters differ from each other and what factors are predictive of the intention to use a CTA and the adoption of a CTA. The intention to use and the adoption of CM were examined based on longitudinal data consisting of 2 time frames in October/November 2020 (N=1900) and December 2020 (N=1594). The clusters were described by demographics, intention, and adoption accordingly. Moreover, we examined whether the clusters and the variables that were found to influence the adoption of CTAs, such as health literacy, were predictive of the intention to use and the adoption of the CM app. RESULTS: The final 5-cluster solution based on the data of wave 1 contained significantly different clusters. In wave 1, respondents in the clusters with positive perceptions (ie, beneficial psychosocial variables for adoption of a CTA) about the CM app were older (P<.001), had a higher education level (P<.001), and had higher intention (P<.001) and adoption (P<.001) rates than those in the clusters with negative perceptions. In wave 2, the intention to use and adoption were predicted by the clusters. The intention to use CM in wave 2 was also predicted using the adoption measured in wave 1 (P<.001, ß=-2.904). Adoption in wave 2 was predicted by age (P=.022, exp(B)=1.171), the intention to use in wave 1 (P<.001, exp(B)=1.770), and adoption in wave 1 (P<.001, exp(B)=0.043). CONCLUSIONS: The 5 clusters, as well as age and previous behavior, were predictive of the intention to use and the adoption of the CM app. Through the distinguishable clusters, insight was gained into the profiles of CM (non)intenders and (non)adopters. TRIAL REGISTRATION: OSF Registries osf.io/cq742; https://osf.io/cq742.