Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 409(20): 4415-24, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21820696

RESUMO

We previously identified dissolved cadmium (Cd(diss)) as the main source of this metal in cultured Pacific oysters, Crassostrea gigas, in Deep Bay, British Columbia, Canada (Lekhi et al., 2008). Total suspended particulate Cd (Cd(part)) was not found to be a significant source of oyster Cd (Cd(oys)), with Cd(part) >20 µm negatively correlated with Cd(oys) concentration. High phytoplankton abundance in spring and summer was hypothesized to reduce Cd(oys) indirectly by drawing down Cd(diss) and increasing oyster growth. In the present study we expanded on these results by examining specifically how the phytoplankton community composition modulates both Cd(diss) and Cd(oys) concentrations in Deep Bay. Based on calculations of nutrients and Cd(diss) drawdown, phytoplankton accounted for approximately 90% of the overall summer reduction in Cd(diss) in the bay. Diatoms were the dominant phytoplankton group, being correlated negatively with Cd(oys) and positively with Cd(part). This suggests that diatom growth mediates the transfer of Cd from the dissolved to the particulate phase, resulting in lower Cd(oys). Spring blooms and sporadic harmful algal blooms may mediate a large flux of Cd(part) to the sediments. Thus, phytoplankton act as a sink, rather than a source, of Cd to oysters in Deep Bay and have a crucial role in the seasonality of Cd(oys) by reducing the concentration of Cd(diss) during the summer. Based on environmental variables, two descriptive models for annual Cd(oys) concentrations were developed using multiple linear regression. The first model (R(2)=0.870) was created to explain the maximum variability in Cd(oys) concentrations throughout the year, while the second (R(2)=0.806) was based on parameters that could be measured easily under farm conditions. Oyster age heavily affected both models, with the first model being secondarily affected by temperature and the second one being more sensitive to changes in salinity.


Assuntos
Cádmio/análise , Ostreidae/crescimento & desenvolvimento , Fitoplâncton/crescimento & desenvolvimento , Poluentes Químicos da Água/análise , Animais , Colúmbia Britânica , Cádmio/farmacocinética , Modelos Lineares , Modelos Teóricos , Ostreidae/metabolismo , Fitoplâncton/metabolismo , Estações do Ano , Água do Mar/química , Solubilidade , Temperatura , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA