Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Water Res ; 71: 227-43, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25618519

RESUMO

Elevated levels of fecal indicator bacteria (FIB) have been observed at Topanga Beach, CA, USA. To identify the FIB sources, a microbial source tracking study using a dog-, a gull- and two human-associated molecular markers was conducted at 10 sites over 21 months. Historical data suggest that episodic discharge from the lagoon at the mouth of Topanga Creek is the main source of bacteria to the beach. A decline in creek FIB/markers downstream from upper watershed development and a sharp increase in FIB/markers at the lagoon sites suggest sources are local to the lagoon. At the lagoon and beach, human markers are detected sporadically, dog marker peaks in abundance mid-winter, and gull marker is chronically elevated. Varied seasonal patterns of FIB and source markers were identified showing the importance of applying a suite of markers over long-term spatial and temporal sampling to identify a complex combination of sources of contamination.


Assuntos
Fezes/microbiologia , Microbiologia da Água , Poluentes da Água/isolamento & purificação , Animais , Bacteroides/isolamento & purificação , Praias , California , Charadriiformes , Cães , Enterobacteriaceae/isolamento & purificação , Enterococcaceae/isolamento & purificação , Monitoramento Ambiental , Fezes/química , Humanos , Rios/microbiologia , Estações do Ano
2.
J Environ Manage ; 136: 112-20, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24583609

RESUMO

Some molecular methods for tracking fecal pollution in environmental waters have both PCR and quantitative PCR (qPCR) assays available for use. To assist managers in deciding whether to implement newer qPCR techniques in routine monitoring programs, we compared detection limits (LODs) and costs of PCR and qPCR assays with identical targets that are relevant to beach water quality assessment. For human-associated assays targeting Bacteroidales HF183 genetic marker, qPCR LODs were 70 times lower and there was no effect of target matrix (artificial freshwater, environmental creek water, and environmental marine water) on PCR or qPCR LODs. The PCR startup and annual costs were the lowest, while the per reaction cost was 62% lower than the Taqman based qPCR and 180% higher than the SYBR based qPCR. For gull-associated assays, there was no significant difference between PCR and qPCR LODs, target matrix did not effect PCR or qPCR LODs, and PCR startup, annual, and per reaction costs were lower. Upgrading to qPCR involves greater startup and annual costs, but this increase may be justified in the case of the human-associated assays with lower detection limits and reduced cost per sample.


Assuntos
Charadriiformes , DNA Bacteriano/isolamento & purificação , Limite de Detecção , Reação em Cadeia da Polimerase/economia , Reação em Cadeia da Polimerase/métodos , Água/química , Animais , Bacteroidetes/isolamento & purificação , Bioensaio/economia , Bioensaio/métodos , Custos e Análise de Custo , Determinação de Ponto Final/economia , Determinação de Ponto Final/métodos , Poluição Ambiental/análise , Fezes/química , Marcadores Genéticos , Humanos , Modelos Lineares , Modelos Logísticos , Microbiologia da Água/normas , Qualidade da Água/normas
3.
Water Res ; 47(18): 6897-908, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23992621

RESUMO

A number of PCR-based methods for detecting human fecal material in environmental waters have been developed over the past decade, but these methods have rarely received independent comparative testing in large multi-laboratory studies. Here, we evaluated ten of these methods (BacH, BacHum-UCD, Bacteroides thetaiotaomicron (BtH), BsteriF1, gyrB, HF183 endpoint, HF183 SYBR, HF183 Taqman(®), HumM2, and Methanobrevibacter smithii nifH (Mnif)) using 64 blind samples prepared in one laboratory. The blind samples contained either one or two fecal sources from human, wastewater or non-human sources. The assay results were assessed for presence/absence of the human markers and also quantitatively while varying the following: 1) classification of samples that were detected but not quantifiable (DNQ) as positive or negative; 2) reference fecal sample concentration unit of measure (such as culturable indicator bacteria, wet mass, total DNA, etc); and 3) human fecal source type (stool, sewage or septage). Assay performance using presence/absence metrics was found to depend on the classification of DNQ samples. The assays that performed best quantitatively varied based on the fecal concentration unit of measure and laboratory protocol. All methods were consistently more sensitive to human stools compared to sewage or septage in both the presence/absence and quantitative analysis. Overall, HF183 Taqman(®) was found to be the most effective marker of human fecal contamination in this California-based study.


Assuntos
Bactérias Anaeróbias/classificação , DNA Bacteriano/análise , Monitoramento Ambiental/métodos , Fezes/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia da Água , Poluição da Água/análise , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , California , Humanos , Limite de Detecção , Águas Residuárias/microbiologia
4.
Water Res ; 47(18): 6839-48, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23911226

RESUMO

Many PCR-based methods for microbial source tracking (MST) have been developed and validated within individual research laboratories. Inter-laboratory validation of these methods, however, has been minimal, and the effects of protocol standardization regimes have not been thoroughly evaluated. Knowledge of factors influencing PCR in different laboratories is vital to future technology transfer for use of MST methods as a tool for water quality management. In this study, a blinded set of 64 filters (containing 32 duplicate samples generated from 12 composite fecal sources) were analyzed by three to five core laboratories with a suite of PCR-based methods utilizing standardized reagents and protocols. Repeatability (intra-laboratory variability) and reproducibility (inter-laboratory variability) of observed results were assessed. When standardized methodologies were used, intra- and inter-laboratory %CVs were generally low (median %CV 0.1-3.3% and 1.9-7.1%, respectively) and comparable to those observed in similar inter-laboratory validation studies performed on other methods of quantifying fecal indicator bacteria (FIB) in environmental samples. ANOVA of %CV values found three human-associated methods (BsteriF1, BacHum, and HF183Taqman) to be similarly reproducible (p > 0.05) and significantly more reproducible (p < 0.05) than HumM2. This was attributed to the increased variability associated with low target concentrations detected by HumM2 (approximately 1-2 log10copies/filter lower) compared to other human-associated methods. Cow-associated methods (BacCow and CowM2) were similarly reproducible (p > 0.05). When using standardized protocols, variance component analysis indicated sample type (fecal source and concentration) to be the major contributor to total variability with that from replicate filters and inter-laboratory analysis to be within the same order of magnitude but larger than inherent intra-laboratory variability. However, when reagents and protocols were not standardized, inter-laboratory %CV generally increased with a corresponding decline in reproducibility. Overall, these findings verify the repeatability and reproducibility of these MST methods and highlight the need for standardization of protocols and consumables prior to implementation of larger scale MST studies involving multiple laboratories.


Assuntos
Bactérias/classificação , Monitoramento Ambiental/métodos , Fezes/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia da Água/normas , Poluição da Água/análise , Bactérias/genética , Bactérias/metabolismo , California , Reprodutibilidade dos Testes
5.
Water Res ; 47(18): 6909-20, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23916711

RESUMO

The contribution of fecal pollution from dogs in urbanized areas can be significant and is an often underestimated problem. Microbial source tracking methods (MST) utilizing quantitative PCR of dog-associated gene sequences encoding 16S rRNA of Bacteroidales are a useful tool to estimate these contributions. However, data about the performance of available assays are scarce. The results of a multi-laboratory study testing two assays for the determination of dog-associated Bacteroidales (DogBact and BacCan-UCD) on 64 single and mixed fecal source samples created from pooled fecal samples collected in California are presented here. Standardization of qPCR data treatment lowered inter-laboratory variability of sensitivity and specificity results. Both assays exhibited 100% sensitivity. Normalization methods are presented that eliminated random and confirmed non-target responses. The combination of standardized qPCR data treatment, use of normalization via a non-target specific Bacteroidales assay (GenBac3), and application of threshold criteria improved the calculated specificity significantly for both assays. Such measures would reasonably improve MST data interpretation not only for canine-associated assays, but for all qPCR assays used in identifying and monitoring fecal pollution in the environment.


Assuntos
Bacteroidetes/classificação , Cães/microbiologia , Monitoramento Ambiental/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Microbiologia da Água , Poluição da Água/análise , Animais , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Bacteroidetes/metabolismo , California , DNA Bacteriano/classificação , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Fezes , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Sensibilidade e Especificidade , Método Simples-Cego
6.
Water Res ; 47(18): 6921-8, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23871256

RESUMO

The State of California has mandated the preparation of a guidance document on the application of fecal source identification methods for recreational water quality management. California contains the fifth highest population of cattle in the United States, making the inclusion of cow-associated methods a logical choice. Because the performance of these methods has been shown to change based on geography and/or local animal feeding practices, laboratory comparisons are needed to determine which assays are best suited for implementation. We describe the performance characterization of two end-point PCR assays (CF128 and CF193) and five real-time quantitative PCR (qPCR) assays (Rum2Bac, BacR, BacCow, CowM2, and CowM3) reported to be associated with either ruminant or cattle feces. Each assay was tested against a blinded set of 38 reference challenge filters (19 duplicate samples) containing fecal pollution from 12 different sources suspected to impact water quality. The abundance of each host-associated genetic marker was measured for qPCR-based assays in both target and non-target animals and compared to quantities of total DNA mass, wet mass of fecal material, as well as Bacteroidales, and enterococci determined by 16S rRNA qPCR and culture-based approaches (enterococci only). Ruminant- and cow-associated genetic markers were detected in all filters containing a cattle fecal source. However, some assays cross-reacted with non-target pollution sources. A large amount of variability was evident across laboratories when protocols were not fixed suggesting that protocol standardization will be necessary for widespread implementation. Finally, performance metrics indicate that the cattle-associated CowM2 qPCR method combined with either the BacR or Rum2Bac ruminant-associated methods are most suitable for implementation.


Assuntos
Bactérias/classificação , Monitoramento Ambiental/métodos , Reação em Cadeia da Polimerase/métodos , Ruminantes/microbiologia , Microbiologia da Água , Poluição da Água/análise , Animais , Bactérias/genética , Bactérias/isolamento & purificação , California , Bovinos/microbiologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Fezes/microbiologia , Marcadores Genéticos , RNA Ribossômico 16S/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA