Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Comput Biol ; 20(3): e1011968, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527066

RESUMO

Enrichment analysis is frequently used in combination with differential expression data to investigate potential commonalities amongst lists of genes and generate hypotheses for further experiments. However, current enrichment analysis approaches on pathways ignore the functional relationships between genes in a pathway, particularly OR logic that occurs when a set of proteins can each individually perform the same step in a pathway. As a result, these approaches miss pathways with large or multiple sets because of an inflation of pathway size (when measured as the total gene count) relative to the number of steps. We address this problem by enriching on step-enabling entities in pathways. We treat sets of protein-coding genes as single entities, and we also weight sets to account for the number of genes in them using the multivariate Fisher's noncentral hypergeometric distribution. We then show three examples of pathways that are recovered with this method and find that the results have significant proportions of pathways not found in gene list enrichment analysis.


Assuntos
Perfilação da Expressão Gênica , Perfilação da Expressão Gênica/métodos
2.
Genetics ; 224(1)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36866529

RESUMO

The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project.


Assuntos
Bases de Dados Genéticas , Proteínas , Ontologia Genética , Proteínas/genética , Anotação de Sequência Molecular , Biologia Computacional
3.
Nucleic Acids Res ; 50(W1): W57-W65, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35640593

RESUMO

The Annotation Query (AnnoQ) (http://annoq.org/) is designed to provide comprehensive and up-to-date functional annotations for human genetic variants. The system is supported by an annotation database with ∼39 million human variants from the Haplotype Reference Consortium (HRC) pre-annotated with sequence feature annotations by WGSA and functional annotations to Gene Ontology (GO) and pathways in PANTHER. The database operates on an optimized Elasticsearch framework to support real-time complex searches. This implementation enables users to annotate data with the most up-to-date functional annotations via simple queries instead of setting up individual tools. A web interface allows users to interactively browse the annotations, annotate variants and search variant data. Its easy-to-use interface and search capabilities are well-suited for scientists with fewer bioinformatics skills such as bench scientists and statisticians. AnnoQ also has an API for users to access and annotate the data programmatically. Packages for programming languages, such as the R package, are available for users to embed the annotation queries in their scripts. AnnoQ serves researchers with a wide range of backgrounds and research interests as an integrated annotation platform.


Assuntos
Variação Genética , Anotação de Sequência Molecular , Software , Humanos , Bases de Dados Genéticas , Internet , Anotação de Sequência Molecular/métodos , Interface Usuário-Computador , Variação Genética/genética , Haplótipos/genética , Linguagens de Programação
4.
Protein Sci ; 31(1): 8-22, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34717010

RESUMO

Phylogenetics is a powerful tool for analyzing protein sequences, by inferring their evolutionary relationships to other proteins. However, phylogenetics analyses can be challenging: they are computationally expensive and must be performed carefully in order to avoid systematic errors and artifacts. Protein Analysis THrough Evolutionary Relationships (PANTHER; http://pantherdb.org) is a publicly available, user-focused knowledgebase that stores the results of an extensive phylogenetic reconstruction pipeline that includes computational and manual processes and quality control steps. First, fully reconciled phylogenetic trees (including ancestral protein sequences) are reconstructed for a set of "reference" protein sequences obtained from fully sequenced genomes of organisms across the tree of life. Second, the resulting phylogenetic trees are manually reviewed and annotated with function evolution events: inferred gains and losses of protein function along branches of the phylogenetic tree. Here, we describe in detail the current contents of PANTHER, how those contents are generated, and how they can be used in a variety of applications. The PANTHER knowledgebase can be downloaded or accessed via an extensive API. In addition, PANTHER provides software tools to facilitate the application of the knowledgebase to common protein sequence analysis tasks: exploring an annotated genome by gene function; performing "enrichment analysis" of lists of genes; annotating a single sequence or large batch of sequences by homology; and assessing the likelihood that a genetic variant at a particular site in a protein will have deleterious effects.


Assuntos
Bases de Dados de Proteínas , Evolução Molecular , Filogenia , Proteínas , Análise de Sequência de Proteína , Software , Anotação de Sequência Molecular , Proteínas/química , Proteínas/genética
5.
Nucleic Acids Res ; 49(D1): D394-D403, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33290554

RESUMO

PANTHER (Protein Analysis Through Evolutionary Relationships, http://www.pantherdb.org) is a resource for the evolutionary and functional classification of protein-coding genes from all domains of life. The evolutionary classification is based on a library of over 15,000 phylogenetic trees, and the functional classifications include Gene Ontology terms and pathways. Here, we analyze the current coverage of genes from genomes in different taxonomic groups, so that users can better understand what to expect when analyzing a gene list using PANTHER tools. We also describe extensive improvements to PANTHER made in the past two years. The PANTHER Protein Class ontology has been completely refactored, and 6101 PANTHER families have been manually assigned to a Protein Class, providing a high level classification of protein families and their genes. Users can access the TreeGrafter tool to add their own protein sequences to the reference phylogenetic trees in PANTHER, to infer evolutionary context as well as fine-grained annotations. We have added human enhancer-gene links that associate non-coding regions with the annotated human genes in PANTHER. We have also expanded the available services for programmatic access to PANTHER tools and data via application programming interfaces (APIs). Other improvements include additional plant genomes and an updated PANTHER GO-slim.


Assuntos
Biologia Computacional/métodos , Elementos Facilitadores Genéticos/genética , Filogenia , Software , Interface Usuário-Computador , Evolução Molecular , Ontologia Genética , Genoma , Anotação de Sequência Molecular , Fases de Leitura Aberta/genética
6.
PLoS One ; 15(12): e0243791, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33320871

RESUMO

Enhancers are powerful and versatile agents of cell-type specific gene regulation, which are thought to play key roles in human disease. Enhancers are short DNA elements that function primarily as clusters of transcription factor binding sites that are spatially coordinated to regulate expression of one or more specific target genes. These regulatory connections between enhancers and target genes can therefore be characterized as enhancer-gene links that can affect development, disease, and homeostatic cellular processes. Despite their implication in disease and the establishment of cell identity during development, most enhancer-gene links remain unknown. Here we introduce a new, publicly accessible database of predicted enhancer-gene links, PEREGRINE. The PEREGRINE human enhancer-gene links interactive web interface incorporates publicly available experimental data from ChIA-PET, eQTL, and Hi-C assays across 78 cell and tissue types to link 449,627 enhancers to 17,643 protein-coding genes. These enhancer-gene links are made available through the new Enhancer module of the PANTHER database and website where the user may easily access the evidence for each enhancer-gene link, as well as query by target gene and enhancer location.


Assuntos
Elementos Facilitadores Genéticos/genética , Genômica/métodos , Linhagem Celular , Bases de Dados Genéticas , Locos de Características Quantitativas/genética
7.
Plant Direct ; 4(12): e00293, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33392435

RESUMO

We aim to enable the accurate and efficient transfer of knowledge about gene function gained from Arabidopsis thaliana and other model organisms to other plant species. This knowledge transfer is frequently challenging in plants due to duplications of individual genes and whole genomes in plant lineages. Such duplications result in complex evolutionary relationships between related genes, which may have similar sequences but highly divergent functions. In such cases, functional inference requires more than a simple sequence similarity calculation. We have developed an online resource, PhyloGenes (phylogenes.org), that displays precomputed phylogenetic trees for plant gene families along with experimentally validated function information for individual genes within the families. A total of 40 plant genomes and 10 non-plant model organisms are represented in over 8,000 gene families. Evolutionary events such as speciation and duplication are clearly labeled on gene trees to distinguish orthologs from paralogs. Nearly 6,000 families have at least one member with an experimentally supported annotation to a Gene Ontology (GO) molecular function or biological process term. By displaying experimentally validated gene functions associated to individual genes within a tree, PhyloGenes enables functional inference for genes of uncharacterized function, based on their evolutionary relationships to experimentally studied genes, in a visually traceable manner. For the many families containing genes that have evolved to perform different functions, PhyloGenes facilitates the use of evolutionary history to determine the most likely function of genes that have not been experimentally characterized. Future work will enrich the resource by incorporating additional gene function datasets such as plant gene expression atlas data.

8.
Nat Protoc ; 14(3): 703-721, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30804569

RESUMO

The PANTHER classification system ( http://www.pantherdb.org ) is a comprehensive system that combines genomes, gene function classifications, pathways and statistical analysis tools to enable biologists to analyze large-scale genome-wide experimental data. The current system (PANTHER v.14.0) covers 131 complete genomes organized into gene families and subfamilies; evolutionary relationships between genes are represented in phylogenetic trees, multiple sequence alignments and statistical models (hidden Markov models (HMMs)). The families and subfamilies are annotated with Gene Ontology (GO) terms, and sequences are assigned to PANTHER pathways. A suite of tools has been built to allow users to browse and query gene functions and analyze large-scale experimental data with a number of statistical tests. PANTHER is widely used by bench scientists, bioinformaticians, computer scientists and systems biologists. Since the protocol for using this tool (v.8.0) was originally published in 2013, there have been substantial improvements and updates in the areas of data quality, data coverage, statistical algorithms and user experience. This Protocol Update provides detailed instructions on how to analyze genome-wide experimental data in the PANTHER classification system.


Assuntos
Genes , Genômica/métodos , Software , Animais , Bases de Dados Genéticas , Ontologia Genética , Genótipo , Humanos , Anotação de Sequência Molecular , Filogenia , Estatística como Assunto
9.
Nucleic Acids Res ; 47(D1): D419-D426, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30407594

RESUMO

PANTHER (Protein Analysis Through Evolutionary Relationships, http://pantherdb.org) is a resource for the evolutionary and functional classification of genes from organisms across the tree of life. We report the improvements we have made to the resource during the past two years. For evolutionary classifications, we have added more prokaryotic and plant genomes to the phylogenetic gene trees, expanding the representation of gene evolution in these lineages. We have refined many protein family boundaries, and have aligned PANTHER with the MEROPS resource for protease and protease inhibitor families. For functional classifications, we have developed an entirely new PANTHER GO-slim, containing over four times as many Gene Ontology terms as our previous GO-slim, as well as curated associations of genes to these terms. Lastly, we have made substantial improvements to the enrichment analysis tools available on the PANTHER website: users can now analyze over 900 different genomes, using updated statistical tests with false discovery rate corrections for multiple testing. The overrepresentation test is also available as a web service, for easy addition to third-party sites.


Assuntos
Bases de Dados Genéticas , Genoma , Proteínas/classificação , Animais , Evolução Molecular , Ontologia Genética , Genes , Genoma Microbiano , Genoma de Planta , Peptídeo Hidrolases/classificação , Filogenia , Proteínas/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA