Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38598843

RESUMO

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Assuntos
Adesão Celular , Proliferação de Células , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Apoptose , Técnicas de Cocultura , Linhagem Celular Tumoral , Agregação Celular , Sobrevivência Celular
2.
Tissue Eng Part C Methods ; 30(5): 193-205, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38545771

RESUMO

Multiple myeloma (MM) clones reside in the bone marrow (BM), which plays a role in its survival and development. The interactions between MM and their neighboring mesenchymal stromal cells (MSCs) have been shown to promote MM growth and drug resistance. However, those interactions are often missing or misrepresented in traditional two-dimensional (2D) culture models. Application of novel three-dimensional (3D) models might recapitulate the BM niche more precisely, which will offer new insights into MM progression and survival. Here, we aimed to establish two 3D models, based on MSC spheroids and collagen droplets incorporating both MM cells and MSCs with the goal of replicating the native myeloma context of the BM niche. This approach revealed that although MSCs can spontaneously assemble spheroids with altered metabolic traits, MSC spheroid culture does not support the integration of MM cells. On the contrary, collagen-droplet culture supported the growth of both cell types. In collagen, MSC proliferation was reduced, with the correlating decrease in ATP production and Ki-67 expression, which might resemble in vivo conditions, rather than 2D abundance of nutrients and space. MSCs and MMs were distributed homogenously throughout the collagen droplet, with an apparent CXCL12 expression in MSCs. In addition, the response of MM cells to bortezomib was substantially reduced in collagen, indicating the importance of 3D culture in the investigation of myeloma cell behavior, as drug resistance is one of the most pertinent issues in cancer therapy.


Assuntos
Colágeno , Células-Tronco Mesenquimais , Mieloma Múltiplo , Esferoides Celulares , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Humanos , Colágeno/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Biológicos , Técnicas de Cultura de Células/métodos
3.
ACS Biomater Sci Eng ; 10(1): 139-148, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36946521

RESUMO

Metabolic glycoengineering involves the stimulation of cells with functionalized monosaccharides. Glucosamine, galactosamine, and mannosamine derivatives are commercially available, but their application may lead to undirected (i.e., chemical) incorporation into proteins. However, sialic acids are attached to the ends of complex sugar chains of glycoproteins, which might be beneficial for cell surface modification via click chemistry. Thus, we studied the incorporation of chemically synthesized unnatural alkyne modified sialic acid (SiaNAl) into glycoproteins of human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) and we show that SiaNAl can be efficiently incorporated in glycoproteins involved in signal transduction and cell junction.


Assuntos
Glicoproteínas , Células-Tronco Mesenquimais , Humanos , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo , Células-Tronco Mesenquimais/metabolismo
6.
Cancers (Basel) ; 15(13)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37444610

RESUMO

The tumor microenvironment (TME) in breast cancer is determined by the complex crosstalk of cancer cells with adipose tissue-inherent cells such as adipose-derived stromal cells (ASCs) and adipocytes resulting from the local invasion of tumor cells in the mammary fat pad. This leads to heterotypic cellular contacts between these cell types. To adequately mimic the specific cell-to-cell interaction in an in vivo-like 3D environment, we developed a direct co-culture spheroid model using ASCs or differentiated adipocytes in combination with MDA-MB-231 or MCF-7 breast carcinoma cells. Co-spheroids were generated in a well-defined and reproducible manner in a high-throughput process. We compared the expression of the tumor-promoting chemokine CCL5 and its cognate receptors in these co-spheroids to indirect and direct standard 2D co-cultures. A marked up-regulation of CCL5 and in particular the receptor CCR1 with strict dependence on cell-cell contacts and culture dimensionality was evident. Furthermore, the impact of direct contacts between ASCs and tumor cells and the involvement of CCR1 in promoting tumor cell migration were demonstrated. Overall, these results show the importance of direct 3D co-culture models to better represent the complex tumor-stroma interaction in a tissue-like context. The unveiling of tumor-specific markers that are up-regulated upon direct cell-cell contact with neighboring stromal cells, as demonstrated in the 3D co-culture spheroids, may represent a promising strategy to find new targets for the diagnosis and treatment of invasive breast cancer.

7.
Bioconjug Chem ; 34(7): 1221-1233, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37328799

RESUMO

The glycosylation of cellular membranes is crucial for the survival and communication of cells. As our target is the engineering of the glycocalyx, we designed a functionalized lipid anchor for the introduction into cellular membranes called Functional Lipid Anchor for MEmbranes (FLAME). Since cholesterol incorporates very effectively into membranes, we developed a twice cholesterol-substituted anchor in a total synthesis by applying protecting group chemistry. We labeled the compound with a fluorescent dye, which allows cell visualization. FLAME was successfully incorporated in the membranes of living human mesenchymal stromal cells (hMSC), acting as a temporary, nontoxic marker. The availability of an azido function─a bioorthogonal reacting group within the compound─enables the convenient coupling of alkyne-functionalized molecules, such as fluorophores or saccharides. After the incorporation of FLAME into the plasma membrane of living hMSC, we were able to successfully couple our molecule with an alkyne-tagged fluorophore via click reaction. This suggests that FLAME is useful for the modification of the membrane surface. Coupling FLAME with a galactosamine derivative yielded FLAME-GalNAc, which was incorporated into U2OS cells as well as in giant unilamellar vesicles (GUVs) and cell-derived giant plasma membrane vesicles (GPMVs). With this, we have shown that FLAME-GalNAc is a useful tool for studying the partitioning in the liquid-ordered (Lo) and the liquid-disordered (Ld) phases. The molecular tool can also be used to analyze the diffusion behavior in the model and the cell membranes by fluorescence correlation spectroscopy (FCS).


Assuntos
Bicamadas Lipídicas , Células-Tronco Mesenquimais , Humanos , Bicamadas Lipídicas/química , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Colesterol/química , Alcinos/metabolismo , Células-Tronco Mesenquimais/metabolismo
9.
Sci Rep ; 13(1): 1855, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725967

RESUMO

The signal modelling framework JimenaE simulates dynamically Boolean networks. In contrast to SQUAD, there is systematic and not just heuristic calculation of all system states. These specific features are not present in CellNetAnalyzer and BoolNet. JimenaE is an expert extension of Jimena, with new optimized code, network conversion into different formats, rapid convergence both for system state calculation as well as for all three network centralities. It allows higher accuracy in determining network states and allows to dissect networks and identification of network control type and amount for each protein with high accuracy. Biological examples demonstrate this: (i) High plasticity of mesenchymal stromal cells for differentiation into chondrocytes, osteoblasts and adipocytes and differentiation-specific network control focusses on wnt-, TGF-beta and PPAR-gamma signaling. JimenaE allows to study individual proteins, removal or adding interactions (or autocrine loops) and accurately quantifies effects as well as number of system states. (ii) Dynamical modelling of cell-cell interactions of plant Arapidopsis thaliana against Pseudomonas syringae DC3000: We analyze for the first time the pathogen perspective and its interaction with the host. We next provide a detailed analysis on how plant hormonal regulation stimulates specific proteins and who and which protein has which type and amount of network control including a detailed heatmap of the A.thaliana response distinguishing between two states of the immune response. (iii) In an immune response network of dendritic cells confronted with Aspergillus fumigatus, JimenaE calculates now accurately the specific values for centralities and protein-specific network control including chemokine and pattern recognition receptors.


Assuntos
Proteínas , Software , Transdução de Sinais , Comunicação Celular , Diferenciação Celular
10.
Cancer Invest ; 41(2): 133-143, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36314889

RESUMO

There is ample evidence today that vitamin D signalling via the vitamin D receptor (VDR) plays a pivotal role in cancer growth and metastasis. The aim of this study was to analyse VDR expression of primary breast cancer and corresponding bone metastases tissue samples. Collectively, 15 sample pairs and 11 samples of patients that did not develop metastases were analysed histologically for VDR expression (n = 41). Overall, VDR expression was significantly lower in bone metastases compared to primary tumour samples (p < .0001). Downregulation of the VDR in breast cancer cells may define a critical turning point in oncogenesis that accelerates cancer cell dissemination and metastases.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Humanos , Feminino , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Neoplasias da Mama/genética , Vitamina D , Neoplasias Ósseas/genética , Neoplasias Ósseas/secundário , Transdução de Sinais
11.
J Clin Med ; 11(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362766

RESUMO

Active vitamin D (1,25(OH)2D3) is known to exert direct anti-cancer actions on various malignant tissues through binding to the vitamin D receptor (VDR). These effects have been demonstrated in breast, prostate, renal and thyroid cancers, which all have a high propensity to metastasise to bone. In addition, there is evidence that vitamin D catabolism via 24-hydroxylase (CYP24A1) is altered in tumour cells, thus, reducing local active vitamin D levels in cancer cells. The aim of this study was to assess VDR and CYP24A1 expression in various types of bone metastases by using immunohistochemistry. Overall, a high total VDR protein expression was detected in 59% of cases (39/66). There was a non-significant trend of high-grade tumours towards the low nuclear VDR expression (p = 0.07). Notably, patients with further distant metastases had a reduced nuclear VDR expression (p = 0.03). Furthermore, a high CYP24A1 expression was detected in 59% (39/66) of bone metastases. There was a significant positive correlation between nuclear VDR and CYP24A1 expression (p = 0.001). Collectively, the VDR and CYP24A1 were widely expressed in a multitude of bone metastases, pointing to a potential role of vitamin D signalling in cancer progression. This is of high clinical relevance, as vitamin D deficiency is frequent in patients with bone metastases.

12.
Blood Adv ; 6(7): 2195-2206, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-34861679

RESUMO

Deregulation such as overexpression of adhesion molecules influences cancer progression and survival. Metastasis of malignant cells from their primary tumor site to distant organs is the most common reason for cancer-related deaths. Junctional adhesion molecule-C (JAM-C), a member of the immunoglobulin-like JAM family, can homodimerize and aid cancer cell migration and metastasis. Here we show that this molecule is dynamically expressed on multiple myeloma (MM) cells in the bone marrow and co-localizes with blood vessels within the bone marrow of patients and mice. In addition, upregulation of JAM-C inversely correlates with the downregulation of the canonical plasma cell marker CD138 (syndecan-1), whose surface expression has recently been found to dynamically regulate a switch between MM growth in situ and MM dissemination. Moreover, targeting JAM-C in a syngeneic in vivo MM model ameliorates MM progression and improves outcome. Overall, our data demonstrate that JAM-C might serve not only as an additional novel diagnostic biomarker but also as a therapeutic target in MM disease.


Assuntos
Moléculas de Adesão Celular/metabolismo , Molécula C de Adesão Juncional , Mieloma Múltiplo , Receptores de Superfície Celular/metabolismo , Animais , Medula Óssea/patologia , Moléculas de Adesão Celular/genética , Movimento Celular , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico
13.
J Orthop Res ; 40(2): 513-523, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33749912

RESUMO

Aseptic loosening of total hip and knee joint replacements is the most common indication for revision surgery after primary hip and knee arthroplasty. Research suggests that exposure and uptake of wear by mesenchymal stromal cells (MSC) and macrophages results in the secretion of proinflammatory cytokines and local osteolysis, but also impaired cell viability and regenerative capacity of MSC. Therefore, this in vitro study compared the regenerative and differentiation capacity of MSC derived from patients undergoing primary total hip arthroplasty (MSCprim) to MSC derived from patients undergoing revision surgery after aseptic loosening of total hip and knee joint implants (MSCrev). Regenerative capacity was examined by measuring the cumulative population doubling (CPD) in addition to the number of passages until cells stopped proliferating. Osteogenesis and adipogenesis in monolayer cultures were assessed using histological stainings. Furthermore, RT-PCR was performed to evaluate the relative expression of osteogenic and adipogenic marker genes as well as the expression of markers for a senescence-associated secretory phenotype (SASP). MSCrev possessed a limited regenerative capacity in comparison to MSCprim. Interestingly, MSCrev also showed an impaired osteogenic and adipogenic differentiation capacity compared to MSCprim and displayed a SASP early after isolation. Whether this is the cause or the consequence of the aseptic loosening of total joint implants remains unclear. Future research should focus on the identification of specific cell markers on MSCprim, which may influence complication rates such as aseptic loosening of total joint arthroplasty to further individualize and optimize total joint arthroplasty.


Assuntos
Artroplastia de Quadril , Células-Tronco Mesenquimais , Humanos , Falha de Prótese , Reoperação , Fenótipo Secretor Associado à Senescência
14.
J Mater Chem B ; 9(45): 9395-9405, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34734960

RESUMO

Nanodiamonds (ND) have been suggested to have several potential uses in biomedicine, since they are seemingly biocompatible. However, data about the biological effects of ND in physiological conditions are scarce. In this study, we observed that prostate cancer cells (LNCaP) and breast cancer cells (MDA-MB-231 and MCF-7) cultured with ND show morphological changes and altered gene and protein expression. In 2D we could detect only slight effects of ND on cell growth and apoptosis induction. Therefore, we applied different functionalized ND in a novel 3D cell culture model that reflects better tissue conditions compared to conventional 2D cell cultures. In 3D proliferation was reduced by all nanoparticles and benzoquinone functionalized ND induced cell death. As the used decellularized scaffold maintains the tissue architecture, we could also functionally investigate if nanoparticles induce cell migration into deeper layers and if they display markers of Mesenchymal Epithelial Transition (MET). We detected in more mesenchymal and invasive growing MDA-MB-231 cells less vimentin and increased levels of pan-cytokeratin expression after ND treatment, which indicates a MET induction. Our observations suggest that the presence of ND stimulates MET, with varying degrees of transition. The observation that ND do not support the opposite, EMT, is beneficial, since EMT is known to play a major role in tumor metastasis. However, a special focus should be placed on the characterization of biological effects to be able to guarantee the safety of ND in clinical use.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Nanodiamantes , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Humanos
15.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802220

RESUMO

Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac4ManNAz) and N-alkyneacetylmannosamine (Ac4ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac4ManNAz was detectable for up to six days while Ac4ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.


Assuntos
Glicocálix , Hexosaminas , Células-Tronco Mesenquimais/metabolismo , Engenharia Metabólica , Modelos Biológicos , Mioblastos Esqueléticos/metabolismo , Linhagem Celular Transformada , Glicocálix/química , Glicocálix/metabolismo , Hexosaminas/química , Hexosaminas/metabolismo , Humanos
16.
Stem Cells Int ; 2020: 7865484, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587621

RESUMO

Bone marrow-derived mesenchymal stromal cells (hMSCs) are capable of differentiating into the osteogenic lineage, and for osteogenic differentiation, mechanical loading is a relevant stimulus. Mechanotransduction leads to the formation of second messengers such as cAMP, cGMP, or Ca2+ influx resulting in the activation of transcription factors mediating gene regulation. The second messengers cAMP and cGMP are degraded by phosphodiesterase isoenzymes (PDE), but the role of these enzymes during osteogenic differentiation or mechanotransduction remains unclear. Here, we focused on the isoenzyme phosphodiesterase 10A (PDE10A) and its role during osteogenic commitment and mechanotransduction. We observed a time-dependent decrease of PDE10A expression in hMSC undergoing differentiation towards the osteogenic lineage. PDE10A inhibition by papaverine diminished osteogenic differentiation. While applying mechanical strain via cyclic stretching of hMSCs led to an upregulation of PDE10A gene expression, inhibition of PDE10A using the drug papaverine repressed expression of mechanoresponsive genes. We conclude that PDE10A is a modulator of osteogenic differentiation as well as mechanotransduction in hMSCs. Our data further suggests that the relative increase of cAMP, rather than the absolute cAMP level, is a key driver of the observed effects.

17.
Biomolecules ; 10(3)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164381

RESUMO

Muscle and bone interact via physical forces and secreted osteokines and myokines. Physical forces are generated through gravity, locomotion, exercise, and external devices. Cells sense mechanical strain via adhesion molecules and translate it into biochemical responses, modulating the basic mechanisms of cellular biology such as lineage commitment, tissue formation, and maturation. This may result in the initiation of bone formation, muscle hypertrophy, and the enhanced production of extracellular matrix constituents, adhesion molecules, and cytoskeletal elements. Bone and muscle mass, resistance to strain, and the stiffness of matrix, cells, and tissues are enhanced, influencing fracture resistance and muscle power. This propagates a dynamic and continuous reciprocity of physicochemical interaction. Secreted growth and differentiation factors are important effectors of mutual interaction. The acute effects of exercise induce the secretion of exosomes with cargo molecules that are capable of mediating the endocrine effects between muscle, bone, and the organism. Long-term changes induce adaptations of the respective tissue secretome that maintain adequate homeostatic conditions. Lessons from unloading, microgravity, and disuse teach us that gratuitous tissue is removed or reorganized while immobility and inflammation trigger muscle and bone marrow fatty infiltration and propagate degenerative diseases such as sarcopenia and osteoporosis. Ongoing research will certainly find new therapeutic targets for prevention and treatment.


Assuntos
Osso e Ossos/metabolismo , Matriz Extracelular/metabolismo , Mecanotransdução Celular , Músculo Esquelético/metabolismo , Osteoporose/metabolismo , Sarcopenia/metabolismo , Osso e Ossos/patologia , Exercício Físico , Matriz Extracelular/patologia , Humanos , Músculo Esquelético/patologia , Osteoporose/patologia , Osteoporose/terapia , Sarcopenia/patologia , Sarcopenia/terapia
18.
Bone Joint Res ; 8(9): 414-424, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31588358

RESUMO

OBJECTIVES: The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. METHODS: In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. RESULTS: Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. CONCLUSION: These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery.Cite this article: J. Schmalzl, P. Plumhoff, F. Gilbert, F. Gohlke, C. Konrads, U. Brunner, F. Jakob, R. Ebert, A. F. Steinert. Tendon-derived stem cells from the long head of the biceps tendon: Inflammation does not affect the regenerative potential. Bone Joint Res 2019;8:414-424. DOI: 10.1302/2046-3758.89.BJR-2018-0214.R2.

19.
Stem Cells Int ; 2019: 5150634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936923

RESUMO

Skeletal development and remodeling of adult bone are critically controlled by activated NOTCH signaling in genetically modified mice. It is yet unclear whether NOTCH signaling is activated by mechanical strain sensed by bone cells. We found that expression of specific NOTCH target genes is induced after in vivo tibial mechanical loading in wild-type mice. We further applied mechanical strain through cyclic stretching in human bone marrow-derived mesenchymal stromal cells (BMSCs) in vitro by using a bioreactor system and detected upregulation of NOTCH target gene expression. Inhibition of the NOTCH pathway in primary BMSCs as well as telomerase-immortalized human BMSCs (hMSC-TERT) through the gamma-secretase inhibitor GSI XII blocked mechanotransduction and modulated actin cytoskeleton organization. Short-hairpin RNA gene silencing identified NOTCH2 as the key receptor mediating NOTCH effects on hMSC-TERT cells. Our data indicate a functional link between NOTCH activation and mechanotransduction in human BMSCs. We suggest that NOTCH signaling is an important contributor to molecular mechanisms that mediate the bone formation response to mechanical strain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA