Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(51): e2300634120, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38096409

RESUMO

A longstanding goal of biology is to identify the key genes and species that critically impact evolution, ecology, and health. Network analysis has revealed keystone species that regulate ecosystems and master regulators that regulate cellular genetic networks. Yet these studies have focused on pairwise biological interactions, which can be affected by the context of genetic background and other species present, generating higher-order interactions. The important regulators of higher-order interactions are unstudied. To address this, we applied a high-dimensional geometry approach that quantifies epistasis in a fitness landscape to ask how individual genes and species influence the interactions in the rest of the biological network. We then generated and also reanalyzed 5-dimensional datasets (two genetic, two microbiome). We identified key genes (e.g., the rbs locus and pykF) and species (e.g., Lactobacilli) that control the interactions of many other genes and species. These higher-order master regulators can induce or suppress evolutionary and ecological diversification by controlling the topography of the fitness landscape. Thus, we provide a method and mathematical justification for exploration of biological networks in higher dimensions.


Assuntos
Microbiota , Microbiota/genética , Epistasia Genética , Evolução Biológica
2.
J Math Biol ; 79(3): 861-899, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31101975

RESUMO

The concept of genetic epistasis defines an interaction between two genetic loci as the degree of non-additivity in their phenotypes. A fitness landscape describes the phenotypes over many genetic loci, and the shape of this landscape can be used to predict evolutionary trajectories. Epistasis in a fitness landscape makes prediction of evolutionary trajectories more complex because the interactions between loci can produce local fitness peaks or troughs, which changes the likelihood of different paths. While various mathematical frameworks have been proposed to investigate properties of fitness landscapes, Beerenwinkel et al. (Stat Sin 17(4):1317-1342, 2007a) suggested studying regular subdivisions of convex polytopes. In this sense, each locus provides one dimension, so that the genotypes form a cube with the number of dimensions equal to the number of genetic loci considered. The fitness landscape is a height function on the coordinates of the cube. Here, we propose cluster partitions and cluster filtrations of fitness landscapes as a new mathematical tool, which provides a concise combinatorial way of processing metric information from epistatic interactions. Furthermore, we extend the calculation of genetic interactions to consider interactions between microbial taxa in the gut microbiome of Drosophila fruit flies. We demonstrate similarities with and differences to the previous approach. As one outcome we locate interesting epistatic information on the fitness landscape where the previous approach is less conclusive.


Assuntos
Bactérias/genética , Evolução Biológica , Drosophila/genética , Drosophila/microbiologia , Epistasia Genética , Aptidão Genética , Microbiota , Animais , Bactérias/classificação , Genótipo , Modelos Genéticos , Mutação , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA