Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Allergy ; 76(8): 2555-2564, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33724487

RESUMO

BACKGROUND: Evidence has accumulated that birch pollen immunotherapy reduces rhinoconjunctivitis to pollen of birch homologous trees. Therapeutic efficacy has been associated with IgE-blocking IgG antibodies. We have recently shown that sera collected after 16 weeks of sublingual immunotherapy with recombinant Bet v 1 (rBet v 1-SLIT) display strong IgE-blocking bioactivity for Bet v 1. Here, we assessed whether rBet v 1-SLIT-induced IgG antibodies display cross-blocking activity to related allergens in Fagales pollen. METHODS: IgE, IgG1 and IgG4 reactivity to recombinant Bet v 1, Aln g 1, Car b 1, Ost c 1, Cor a 1, Fag s 1, Cas s 1 and Que a 1 were assessed in pre- and post-SLIT samples of 17 individuals by ELISA. A basophil inhibition assay using stripped basophils re-sensitized with a serum pool containing high Bet v 1-specific IgE levels was established and used to assess CD63 expression in response to allergens after incubation with pre-SLIT or post-SLIT samples. IgG1 and IgG4 were depleted from post-SLIT samples to assess its contribution to IgE-cross-blocking. RESULTS: Sublingual immunotherapy with recombinant Bet v 1 boosted cross-reactive IgE antibodies and induced IgG1 and IgG4 antibodies with inter- and intra-individually differing reactivity to the homologs. Highly variable cross-blocking activities of post-SLIT samples to the different allergens were found. IgG1 and IgG4 antibodies displayed cross-blocking activity with individual variance. CONCLUSIONS: Our mechanistic approach suggested that immunotherapy with the reference allergen Bet v 1 induces individual repertoires of cross-reactive IgG1 and IgG4 antibodies. The cross-blocking bioactivity of these antibodies was also highly variable and neither predictable from protein homology nor IgE-cross-reactivity.


Assuntos
Antígenos de Plantas/imunologia , Antígenos de Plantas/uso terapêutico , Imunoterapia Sublingual , Alérgenos , Anticorpos Bloqueadores , Fagales , Humanos , Imunoglobulina E , Proteínas de Plantas , Proteínas Recombinantes
2.
Clin Exp Allergy ; 48(10): 1354-1363, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29992665

RESUMO

BACKGROUND: Aedes aegypti and Dermatophagoides pteronyssinus contain important allergens including cross-reactive tropomyosins. However, the functional and clinical relevance of their cross-reactivity is still debated. OBJECTIVE: To analyse the humoral and cellular cross-reactivity of recombinant Aed a 10.01, Aed a 10.02 and Der p 10. METHODS: Sera from 15 Austrian house dust mite-allergic, Der p 10-sensitized individuals were tested for IgE reactivity to recombinant tropomyosins in ELISA, inhibition ELISA and basophil activation tests. BALB/c mice were immunized with Aed a 10.01 or Aed a 10.02, and their sera were assessed for reactivity to all tropomyosins. Splenocytes were stimulated with all tropomyosins and synthetic peptides representing the amino acid sequence of Aed a 10.01. RESULTS: IgE antibodies of Der p 10-sensitized patients cross-reacted with both tropomyosins from A. aegypti. Aed a 10.01 was a more potent inhibitor of IgE binding to Der p 10 and a stronger activator of basophils sensitized with Der p 10-specific IgE than Aed a 10.02. Murine antibodies raised against Aed a 10.01 and Aed a 10.02 cross-reacted with Der p 10. Aed a 10.01-specific antibody showed stronger cross-reactivity with Der p 10 than Aed a 10.02-specific antibody. Splenocytes from both groups of mice proliferated similarly to all tropomyosins. Five cross-reactive T cell-activating regions were identified. CONCLUSION AND CLINICAL RELEVANCE: Tropomyosins from D. pteronyssinus and A. aegypti show humoral and cellular cross-reactivity, involving 5 potential T cell-activating regions. The more pronounced cross-reactivity of Aed a 10.01 and Der p 10 matched the higher sequence similarity of both proteins.


Assuntos
Reações Cruzadas/imunologia , Culicidae/imunologia , Imunidade Celular , Imunidade Humoral , Pyroglyphidae/imunologia , Tropomiosina/imunologia , Adolescente , Adulto , Alérgenos/imunologia , Sequência de Aminoácidos , Animais , Criança , Dermatophagoides pteronyssinus/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Hipersensibilidade/imunologia , Imunoglobulina E/imunologia , Ativação Linfocitária/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
4.
Sci Rep ; 7(1): 6049, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729676

RESUMO

Feverfew (Parthenium hysterophorus), an invasive weed from the Asteraceae family, has been reported as allergen source. Despite its relevance, knowledge of allergens is restricted to a partial sequence of a hydroxyproline-rich glycoprotein. We aimed to obtain the entire sequence for recombinant production and characterize feverfew pollen using proteomics and immunological assays. Par h 1, a defensin-proline fusion allergen was obtained by cDNA cloning and recombinantly produced in E. coli. Using two complementary proteomic strategies, a total of 258 proteins were identified in feverfew pollen among those 47 proteins belonging to allergenic families. Feverfew sensitized patients' sera from India revealed IgE reactivity with a pectate lyase, PR-1 protein and thioredoxin in immonoblot. In ELISA, recombinant Par h 1 was recognized by 60 and 40% of Austrian and Indian sera, respectively. Inhibition assays demonstrated the presence of IgE cross-reactive Par h 1, pectate lyase, lipid-transfer protein, profilin and polcalcin in feverfew pollen. This study reveals significant data on the allergenic composition of feverfew pollen and makes recombinant Par h 1 available for cross-reactivity studies. Feverfew might become a global player in weed pollen allergy and inclusion of standardized extracts in routine allergy diagnosis is suggested in exposed populations.


Assuntos
Alérgenos/metabolismo , Pólen/metabolismo , Proteoma , Proteômica , Tanacetum parthenium/metabolismo , Alérgenos/genética , Alérgenos/imunologia , Sequência de Aminoácidos , Imunoglobulina E/imunologia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Pólen/imunologia , Proteômica/métodos , Tanacetum parthenium/genética , Tanacetum parthenium/imunologia
5.
Int Arch Allergy Immunol ; 173(1): 44-50, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28494467

RESUMO

BACKGROUND: Allergen immunotherapy (AIT) still plays a minor role in the treatment of allergic diseases. To improve the acceptance of AIT by allergic patients, the treatment has to become more convenient and efficacious. One possibility is the oral application of allergens or derivatives thereof. Therefore, we sought to produce a recombinant allergen in the green alga Chlamydomonas reinhardtii as a novel production platform. METHODS: The major birch pollen allergen Bet v 1 was selected as candidate molecule, and a codon-optimized gene was synthesized and stably integrated into the microalga C. reinhardtii FUD50. Positive transformants were identified by PCR, cultured, and thereafter cells were disrupted by sonication. Bet v 1 was purified from algal total soluble protein (TSP) by affinity chromatography and characterized physicochemically as well as immunologically. RESULTS: All transformants showed expression of the allergen with yields between 0.01 and 0.04% of TSP. Algal-derived Bet v 1 displayed similar secondary structure elements as the Escherichia coli-produced reference allergen. Moreover, Bet v 1 produced in C. reinhardtii showed binding comparable to human IgE as well as murine Bet v 1-specific IgG. CONCLUSION: We could successfully produce recombinant Bet v 1 in C. reinhardtii. As microalgae are classified as GRAS (generally recognized as safe), the pilot study supports the development of novel allergy treatment concepts such as the oral administration of allergen-containing algal extracts for therapy.


Assuntos
Alérgenos/genética , Antígenos de Plantas/genética , Chlamydomonas reinhardtii/genética , Cloroplastos/genética , Proteínas de Plantas/genética , Proteínas Recombinantes/genética , Alérgenos/imunologia , Alérgenos/isolamento & purificação , Antígenos de Plantas/imunologia , Antígenos de Plantas/isolamento & purificação , Humanos , Imunoglobulina E/imunologia , Proteínas de Plantas/imunologia , Proteínas de Plantas/isolamento & purificação , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação
6.
PLoS One ; 12(1): e0169784, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081194

RESUMO

BACKGROUND: Ragweed (Ambrosia artemisiifolia) and mugwort (Artemisia vulgaris) are the major cause of pollen allergy in late summer. Allergen-specific lymphocytes are crucial for immune modulation during immunotherapy. We sought to generate and pre-clinically characterise highly immunogenic domains of the homologous pectate lyases in ragweed (Amb a 1) and mugwort pollen (Art v 6) for immunotherapy. METHODS: Domains of Amb a 1 (Amb a 1α) and Art v 6 (Art v 6α) and a hybrid molecule, consisting of both domains, were designed, expressed in E. coli and purified. Human IgE reactivity and allergenicity were assessed by ELISA and mediator release experiments using ragweed and mugwort allergic patients. Moreover, T cell proliferation was determined. Blocking IgG antibodies and cytokine production in BALB/c mice were studied by ELISA and ELISPOT. RESULTS: The IgE binding capacity and in vitro allergenic activity of the Amb a 1 and Art v 6 domains and the hybrid were either greatly reduced or abolished. The recombinant proteins induced T cell proliferative responses comparable to those of the natural allergens, indicative of retained allergen-specific T cell response. Mice immunisation with the hypoallergens induced IL-4, IL-5, IL-13 and IFN-γ production after antigen-specific in vitro re-stimulation of splenocytes. Moreover, murine IgG antibodies that inhibited specific IgE binding of ragweed and mugwort pollen allergic patients were detected. CONCLUSION: Accumulation of T cell epitopes and deletion of IgE reactive areas of Amb a 1 and Art v 6, modulated the immunologic properties of the allergen immuno-domains, leading to promising novel candidates for therapeutic approach.


Assuntos
Ambrosia/imunologia , Antígenos de Plantas/metabolismo , Artemisia/imunologia , Epitopos de Linfócito T/imunologia , Proteínas de Plantas/metabolismo , Adolescente , Adulto , Idoso , Alérgenos/imunologia , Ambrosia/química , Sequência de Aminoácidos , Animais , Antígenos de Plantas/genética , Antígenos de Plantas/isolamento & purificação , Artemisia/química , Criança , Dicroísmo Circular , Escherichia coli/metabolismo , Feminino , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Interferon gama/análise , Interleucinas/análise , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Ratos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Linfócitos T/citologia , Linfócitos T/imunologia , Adulto Jovem
7.
J Allergy Clin Immunol ; 140(2): 525-533.e10, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27939703

RESUMO

BACKGROUND: Allergy vaccines should be easily applicable, safe, and efficacious. For Bet v 1-mediated birch pollen and associated food allergies, a single wild-type allergen does not provide a complete solution. OBJECTIVE: We aimed to combine immunologically relevant epitopes of Bet v 1 and the 2 clinically most important related food allergens from apple and hazelnut to a single hybrid protein, termed MBC4. METHODS: After identification of T cell epitope-containing parts on each of the 3 parental allergens, the hybrid molecule was designed to cover relevant epitopes and evaluated in silico. Thereby a mutation was introduced into the hybrid sequence, which should alter the secondary structure without compromising the immunogenic properties of the molecule. RESULTS: MBC4 and the parental allergens were purified to homogeneity. Analyses of secondary structure elements revealed substantial changes rendering the hybrid de facto nonreactive with patients' serum IgE. Nevertheless, the protein was monomeric in solution. MBC4 was able to activate T-cell lines from donors with birch pollen allergy and from mice immunized with the parental allergens. Moreover, on immunization of mice and rabbits, MBC4 induced cross-reactive IgG antibodies, which were able to block the binding of human serum IgE. CONCLUSION: Directed epitope rearrangements combined with a knowledge-based structural modification resulted in a protein unable to bind IgE from allergic patients. Still, properties to activate specific T cells or induce blocking antibodies were conserved. This suggests that MBC4 is a suitable vaccine candidate for the simultaneous treatment of Bet v 1 and associated food allergies.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Epitopos de Linfócito T/imunologia , Hipersensibilidade/imunologia , Proteínas de Plantas/imunologia , Vacinas , Alérgenos/genética , Animais , Antígenos de Plantas/genética , Linhagem Celular , Reações Cruzadas , Feminino , Humanos , Hipersensibilidade/sangue , Hipersensibilidade/terapia , Imunização , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/imunologia , Camundongos Endogâmicos BALB C , Proteínas de Plantas/genética , Coelhos , Linfócitos T/imunologia
8.
PLoS One ; 10(11): e0142625, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579717

RESUMO

Fish allergy is associated with moderate to severe IgE-mediated reactions to the calcium binding parvalbumins present in fish muscle. Allergy to multiple fish species is caused by parvalbumin-specific cross-reactive IgE recognizing conserved epitopes. In this study, we aimed to produce cross-reactive single chain variable fragment (scFv) antibodies for the detection of parvalbumins in fish extracts and the identification of IgE epitopes. Parvalbumin-specific phage clones were isolated from the human ETH-2 phage display library by three rounds of biopanning either against cod parvalbumin or by sequential biopanning against cod (Gad m 1), carp (Cyp c 1) and rainbow trout (Onc m 1) parvalbumins. While biopanning against Gad m 1 resulted in the selection of clones specific exclusively for Gad m 1, the second approach resulted in the selection of clones cross-reacting with all three parvalbumins. Two clones, scFv-gco9 recognizing all three parvalbumins, and scFv-goo8 recognizing only Gad m 1 were expressed in the E. coli non-suppressor strain HB2151 and purified from the periplasm. scFv-gco9 showed highly selective binding to parvalbumins in processed fish products such as breaded cod sticks, fried carp and smoked trout in Western blots. In addition, the scFv-gco9-AP produced as alkaline phosphatase fusion protein, allowed a single-step detection of the parvalbumins. In competitive ELISA, scFv-gco9 was able to inhibit binding of IgE from fish allergic patients' sera to all three ß-parvalbumins by up to 80%, whereas inhibition by scFv-goo8 was up to 20%. 1H/15N HSQC NMR analysis of the rGad m 1:scFv-gco9 complex showed participation of amino acid residues conserved among these three parvalbumins explaining their cross-reactivity on a molecular level. In this study, we have demonstrated an approach for the selection of cross-reactive parvalbumin-specific antibodies that can be used for allergen detection and for mapping of conserved epitopes.


Assuntos
Alérgenos/imunologia , Hipersensibilidade Alimentar/imunologia , Imunoglobulina E/imunologia , Parvalbuminas/imunologia , Alérgenos/isolamento & purificação , Animais , Reações Cruzadas/imunologia , Mapeamento de Epitopos , Epitopos/imunologia , Peixes/imunologia , Humanos , Imunoglobulina E/isolamento & purificação , Parvalbuminas/isolamento & purificação , Anticorpos de Cadeia Única/imunologia
9.
PLoS One ; 10(5): e0120038, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25978036

RESUMO

BACKGROUND: Pollen released by allergenic members of the botanically unrelated families of Asteraceae and Cupressaceae represent potent elicitors of respiratory allergies in regions where these plants are present. As main allergen sources the Asteraceae species ragweed and mugwort, as well as the Cupressaceae species, cypress, mountain cedar, and Japanese cedar have been identified. The major allergens of all species belong to the pectate lyase enzyme family. Thus, we thought to investigate cross-reactivity pattern as well as sensitization capacities of pectate lyase pollen allergens in cohorts from distinct geographic regions. METHODS: The clinically relevant pectate lyase pollen allergens Amb a 1, Art v 6, Cup a 1, Jun a 1, and Cry j 1 were purified from aqueous pollen extracts, and patients' sensitization pattern of cohorts from Austria, Canada, Italy, and Japan were determined by IgE ELISA and cross-inhibition experiments. Moreover, we performed microarray experiments and established a mouse model of sensitization. RESULTS: In ELISA and ELISA inhibition experiments specific sensitization pattern were discovered for each geographic region, which reflected the natural allergen exposure of the patients. We found significant cross-reactivity within Asteraceae and Cupressaceae pectate lyase pollen allergens, which was however limited between the orders. Animal experiments showed that immunization with Asteraceae allergens mainly induced antibodies reactive within the order, the same was observed for the Cupressaceae allergens. Cross-reactivity between orders was minimal. Moreover, Amb a 1, Art v 6, and Cry j 1 showed in general higher immunogenicity. CONCLUSION: We could cluster pectate lyase allergens in four categories, Amb a 1, Art v 6, Cup a 1/Jun a 1, and Cry j 1, respectively, at which each category has the potential to sensitize predisposed individuals. The sensitization pattern of different cohorts correlated with pollen exposure, which should be considered for future allergy diagnosis and therapy.


Assuntos
Alérgenos/imunologia , Pólen/imunologia , Polissacarídeo-Liases/imunologia , Ambrosia/imunologia , Animais , Antígenos de Plantas/imunologia , Artemisia/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C
10.
Int Arch Allergy Immunol ; 166(1): 13-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25765158

RESUMO

BACKGROUND: Peanut allergy develops after primary sensitization to peanut allergens and/or IgE cross-sensitization with homologous allergens from various plants. Therefore, heterogeneous patterns of sensitization to individual peanut allergens are observed in different countries. The aim of this study was to examine the IgE sensitization patterns of Austrian peanut-allergic patients. METHODS: Sera from 65 peanut-allergic patients and 20 peanut-tolerant atopics were obtained in four Austrian allergy clinics. Sensitization patterns against peanut allergens Ara h 1-3, 6, 8 and 9 were identified by ImmunoCAP and ImmunoCAP ISAC. RESULTS: Austrian peanut-allergic patients were sensitized to Ara h 2 and 6 (71%), followed by Ara h 1 (62%), Ara h 8 (45%), Ara h 3 (35%) and Ara h 9 (11%). All sera containing Ara h 2-specific IgE were also positive for Ara h 6, with Ara h 6-specific IgE levels significantly (p < 0.05) higher compared with Ara h 2. Twelve percent displayed IgE reactivity exclusively to Ara h 8. Peanut extract and Ara h 8 showed low diagnostic specificities of 25 and 10%, respectively. The other peanut allergens showed 100% specificity. Diagnostic sensitivities determined by ImmunoCAP ISAC and ImmunoCAP were highly similar for Ara h 2, 3 and 8. CONCLUSIONS: The majority of symptomatic peanut-allergic patients are sensitized to Ara h 2 and Ara h 6. In peanut-symptomatic patients with additional birch pollen allergy, other peanut allergens, especially Ara h 8, should be tested when IgE reactivity to Ara h 2 is absent.


Assuntos
Alérgenos/imunologia , Arachis/imunologia , Hipersensibilidade a Amendoim/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Albuminas 2S de Plantas/imunologia , Adolescente , Adulto , Antígenos de Plantas/imunologia , Áustria , Betula/imunologia , Estudos de Casos e Controles , Criança , Pré-Escolar , Reações Cruzadas , Feminino , Glicoproteínas/imunologia , Humanos , Imunoglobulina E/sangue , Masculino , Proteínas de Membrana , Hipersensibilidade a Amendoim/sangue , Hipersensibilidade a Amendoim/fisiopatologia , Proteínas de Plantas/imunologia , Rinite Alérgica Sazonal/sangue , Rinite Alérgica Sazonal/fisiopatologia , Proteínas de Armazenamento de Sementes/imunologia
11.
Mol Nutr Food Res ; 58(3): 625-34, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23996905

RESUMO

SCOPE: Birch pollen associated allergy to mung bean sprouts is caused by cross-reactivity between the birch pollen allergen Bet v 1 and the mung bean allergen Vig r 1. We aimed to determine the allergenicity of the cytokinin-specific binding protein from mung bean (Vig r 6), another allergen related to Bet v 1 with only 31% sequence identity. METHODS AND RESULTS: Bet v 1, Gly m 4, Vig r 1, and Vig r 6 were produced in Escherichia coli. In an ELISA, 73 and 32% of Bet v 1-sensitized birch-allergic patients' sera (n = 60) showed IgE binding to Vig r 1 and Vig r 6, respectively. Of 19 patients who reported allergic reactions or had positive prick-to-prick tests to mung bean sprouts, 79% showed IgE binding to Vig r 1 and 63% showed IgE binding to Vig r 6. Bet v 1 completely inhibited IgE binding to both mung bean allergens. Vig r 6 showed partial cross-reactivity with Vig r 1 and activated basophils sensitized with mung bean allergic patients' sera. CONCLUSION: We demonstrated IgE cross-reactivity despite low sequence identity between Vig r 6 and other Bet v 1-related allergens. Thus, IgE binding to Vig r 6 may contribute to birch pollinosis-associated mung bean sprout allergy.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Fabaceae/imunologia , Imunoglobulina E/metabolismo , Rinite Alérgica Sazonal/imunologia , Adolescente , Adulto , Idoso , Alérgenos/genética , Sequência de Aminoácidos , Animais , Basófilos/imunologia , Criança , Reações Cruzadas/imunologia , Feminino , Humanos , Soros Imunes , Imunoglobulina E/imunologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas de Plantas/imunologia , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estudos Retrospectivos , Adulto Jovem
13.
Allergo J Int ; 23(8): 282-319, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26120539

RESUMO

The present guideline (S2k) on allergen-specific immunotherapy (AIT) was established by the German, Austrian and Swiss professional associations for allergy in consensus with the scientific specialist societies and professional associations in the fields of otolaryngology, dermatology and venereology, pediatric and adolescent medicine, pneumology as well as a German patient organization (German Allergy and Asthma Association; Deutscher Allergie- und Asthmabund, DAAB) according to the criteria of the Association of the Scientific Medical Societies in Germany (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften, AWMF). AIT is a therapy with disease-modifying effects. By administering allergen extracts, specific blocking antibodies, toler-ance-inducing cells and mediators are activated. These prevent further exacerbation of the allergen-triggered immune response, block the specific immune response and attenuate the inflammatory response in tissue. Products for SCIT or SLIT cannot be compared at present due to their heterogeneous composition, nor can allergen concentrations given by different manufacturers be compared meaningfully due to the varying methods used to measure their active ingredients. Non-modified allergens are used for SCIT in the form of aqueous or physically adsorbed (depot) extracts, as well as chemically modified allergens (allergoids) as depot extracts. Allergen extracts for SLIT are used in the form of aqueous solutions or tablets. The clinical efficacy of AIT is measured using various scores as primary and secondary study endpoints. The EMA stipulates combined symptom and medication scores as primary endpoint. A harmonization of clinical endpoints, e. g., by using the combined symptom and medication scores (CSMS) recommended by the EAACI, is desirable in the future in order to permit the comparison of results from different studies. The current CONSORT recommendations from the ARIA/GA2LEN group specify standards for the evaluation, presentation and publication of study results. According to the Therapy allergen ordinance (TAV), preparations containing common allergen sources (pollen from grasses, birch, alder, hazel, house dust mites, as well as bee and wasp venom) need a marketing authorization in Germany. During the marketing authorization process, these preparations are examined regarding quality, safety and efficacy. In the opinion of the authors, authorized allergen preparations with documented efficacy and safety, or preparations tradeable under the TAV for which efficacy and safety have already been documented in clinical trials meeting WAO or EMA standards, should be preferentially used. Individual formulations (NPP) enable the prescription of rare allergen sources (e.g., pollen from ash, mugwort or ambrosia, mold Alternaria, animal allergens) for specific immunotherapy. Mixing these allergens with TAV allergens is not permitted. Allergic rhinitis and its associated co-morbidities (e. g., bronchial asthma) generate substantial direct and indirect costs. Treatment options, in particular AIT, are therefore evaluated using cost-benefit and cost-effectiveness analyses. From a long-term perspective, AIT is considered to be significantly more cost effective in allergic rhinitis and allergic asthma than pharmacotherapy, but is heavily dependent on patient compliance. Meta-analyses provide unequivocal evidence of the efficacy of SCIT and SLIT for certain allergen sources and age groups. Data from controlled studies differ in terms of scope, quality and dosing regimens and require product-specific evaluation. Therefore, evaluating individual preparations according to clearly defined criteria is recommended. A broad transfer of the efficacy of certain preparations to all preparations administered in the same way is not endorsed. The website of the German Society for Allergology and Clinical Immunology (www.dgaki.de/leitlinien/s2k-leitlinie-sit; DGAKI: Deutsche Gesellschaft für Allergologie und klinische Immunologie) provides tables with specific information on available products for AIT in Germany, Switzerland and Austria. The tables contain the number of clinical studies per product in adults and children, the year of market authorization, underlying scoring systems, number of randomized and analyzed subjects and the method of evaluation (ITT, FAS, PP), separately given for grass pollen, birch pollen and house dust mite allergens, and the status of approval for the conduct of clinical studies with these products. Strong evidence of the efficacy of SCIT in pollen allergy-induced allergic rhinoconjunctivitis in adulthood is well-documented in numerous trials and, in childhood and adolescence, in a few trials. Efficacy in house dust mite allergy is documented by a number of controlled trials in adults and few controlled trials in children. Only a few controlled trials, independent of age, are available for mold allergy (in particular Alternaria). With regard to animal dander allergies (primarily to cat allergens), only small studies, some with methodological deficiencies are available. Only a moderate and inconsistent therapeutic effect in atopic dermatitis has been observed in the quite heterogeneous studies conducted to date. SCIT has been well investigated for individual preparations in controlled bronchial asthma as defined by the Global Initiative for Asthma (GINA) 2007 and intermittent and mild persistent asthma (GINA 2005) and it is recommended as a treatment option, in addition to allergen avoidance and pharmacotherapy, provided there is a clear causal link between respiratory symptoms and the relevant allergen. The efficacy of SLIT in grass pollen-induced allergic rhinoconjunctivitis is extensively documented in adults and children, whilst its efficacy in tree pollen allergy has only been shown in adults. New controlled trials (some with high patient numbers) on house dust mite allergy provide evidence of efficacy of SLIT in adults. Compared with allergic rhinoconjunctivitis, there are only few studies on the efficacy of SLIT in allergic asthma. In this context, newer studies show an efficacy for SLIT on asthma symptoms in the subgroup of grass pollen allergic children, adolescents and adults with asthma and efficacy in primary house dust mite allergy-induced asthma in adolescents aged from 14 years and in adults. Aspects of secondary prevention, in particular the reduction of new sensitizations and reduced asthma risk, are important rationales for choosing to initiate treatment early in childhood and adolescence. In this context, those products for which the appropriate effects have been demonstrated should be considered. SCIT or SLIT with pollen or mite allergens can be performed in patients with allergic rhinoconjunctivitis using allergen extracts that have been proven to be effective in at least one double-blind placebo-controlled (DBPC) study. At present, clinical trials are underway for the indication in asthma due to house dust mite allergy, some of the results of which have already been published, whilst others are still awaited (see the DGAKI table "Approved/potentially completed studies" via www.dgaki.de/Leitlinien/s2k-Leitlinie-sit (according to www.clinicaltrialsregister.eu)). When establishing the indication for AIT, factors that favour clinical efficacy should be taken into consideration. Differences between SCIT and SLIT are to be considered primarily in terms of contraindications. In individual cases, AIT may be justifiably indicated despite the presence of contraindications. SCIT injections and the initiation of SLIT are performed by a physician experienced in this type of treatment and who is able to administer emergency treatment in the case of an allergic reaction. Patients must be fully informed about the procedure and risks of possible adverse events, and the details of this process must be documented (see "Treatment information sheet"; available as a handout via www.dgaki.de/Leitlinien/s2k-Leitlinie-sit). Treatment should be performed according to the manufacturer's product information leaflet. In cases where AIT is to be performed or continued by a different physician to the one who established the indication, close cooperation is required in order to ensure that treatment is implemented consistently and at low risk. In general, it is recommended that SCIT and SLIT should only be performed using preparations for which adequate proof of efficacy is available from clinical trials. Treatment adherence among AIT patients is lower than assumed by physicians, irrespective of the form of administration. Clearly, adherence is of vital importance for treatment success. Improving AIT adherence is one of the most important future goals, in order to ensure efficacy of the therapy. Severe, potentially life-threatening systemic reactions during SCIT are possible, but - providing all safety measures are adhered to - these events are very rare. Most adverse events are mild to moderate and can be treated well. Dose-dependent adverse local reactions occur frequently in the mouth and throat in SLIT. Systemic reactions have been described in SLIT, but are seen far less often than with SCIT. In terms of anaphylaxis and other severe systemic reactions, SLIT has a better safety profile than SCIT. The risk and effects of adverse systemic reactions in the setting of AIT can be effectively reduced by training of personnel, adhering to safety standards and prompt use of emergency measures, including early administration of i. m. epinephrine. Details on the acute management of anaphylactic reactions can be found in the current S2 guideline on anaphylaxis issued by the AWMF (S2-AWMF-LL Registry Number 061-025). AIT is undergoing some innovative developments in many areas (e. g., allergen characterization, new administration routes, adjuvants, faster and safer dose escalation protocols), some of which are already beinginvestigated in clinical trials. Cite this as Pfaar O, Bachert C, Bufe A, Buhl R, Ebner C, Eng P, Friedrichs F, Fuchs T, Hamelmann E, Hartwig-Bade D, Hering T, Huttegger I, Jung K, Klimek L, Kopp MV, Merk H, Rabe U, Saloga J, Schmid-Grendelmeier P, Schuster A, Schwerk N, Sitter H, Umpfenbach U, Wedi B, Wöhrl S, Worm M, Kleine-Tebbe J. Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases - S2k Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the Society for Pediatric Allergy and Environmental Medicine (GPA), the Medical Association of German Allergologists (AeDA), the Austrian Society for Allergy and Immunology (ÖGAI), the Swiss Society for Allergy and Immunology (SGAI), the German Society of Dermatology (DDG), the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), the German Society of Pediatrics and Adolescent Medicine (DGKJ), the Society for Pediatric Pneumology (GPP), the German Respiratory Society (DGP), the German Association of ENT Surgeons (BV-HNO), the Professional Federation of Paediatricians and Youth Doctors (BVKJ), the Federal Association of Pulmonologists (BDP) and the German Dermatologists Association (BVDD). Allergo J Int 2014;23:282-319.

14.
Mol Nutr Food Res ; 57(11): 2061-70, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23913675

RESUMO

SCOPE: Apium graveolens represents a relevant food allergen source linked with severe systemic reactions. We sought to identify an IgE-binding nonspecific lipid transfer protein (nsLTP) in celery tuber. METHODS AND RESULTS: A low molecular weight protein exclusively present in celery tuber was purified and designated Api g 6. The entire protein sequence was obtained by MS and classified as member of the nsLTP2 family. Api g 6 is monomeric in solution with a molecular mass of 6936 Da. The alpha-helical disulfide bond-stabilized structure confers tremendous thermal stability (Tm > 90°C) and high resistance to gastrointestinal digestion. Endolysosomal degradation demonstrated low susceptibility and the presence of a dominant peptide cluster at the C-terminus. Thirty-eight percent of A. graveolens allergic patients demonstrated IgE reactivity to purified natural Api g 6 in ELISA and heat treatment did only partially reduce its allergenic activity. No correlation in IgE binding and limited cross-reactivity was observed with Api g 2 and Art v 3, nsLTP1 from celery stalks and mugwort pollen. CONCLUSION: Api g 6, a novel nsLTP2 from celery tuber represents the first well-characterized allergen in this protein family. Despite similar structural and physicochemical features as nsLTP1, immunological properties of Api g 6 are distinct which warrants its inclusion in molecule-based diagnosis of A. graveolens allergy.


Assuntos
Alérgenos/análise , Apium/química , Apium/imunologia , Proteínas de Transporte/imunologia , Galectina 3/imunologia , Proteínas de Plantas/análise , Alérgenos/imunologia , Antígenos de Plantas/análise , Antígenos de Plantas/imunologia , Proteínas de Transporte/análise , Dicroísmo Circular , Reações Cruzadas , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/imunologia , Galectina 3/análise , Trato Gastrointestinal/metabolismo , Humanos , Peso Molecular , Proteínas de Plantas/imunologia , Proteólise
17.
J Allergy Clin Immunol ; 131(1): 94-102, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22921871

RESUMO

BACKGROUND: Antibodies and T cells specific for the major birch pollen allergen Bet v 1 cross-react with structurally related food allergens, such as Mal d 1 in apple. OBJECTIVE: We sought to evaluate the effects of oral uptake of Mal d 1 on the allergen-specific immune response in patients with birch pollen allergy. METHODS: Patients received 50 µg of rBet v 1 sublingually on 2 consecutive days outside of the birch pollen season. One year later, equal amounts of rMal d 1 were administered. Blood samples were collected before and after oral exposure, as well as before and after the intermediate birch pollen season. Allergen-specific IgE levels were determined by using ImmunoCAP. Proliferation of allergen-stimulated PBMCs was assessed, as well as the expression of IL-5, IL-13, IL-10, IFN-γ, and forkhead box protein 3 (Foxp3) in isolated T cells (real-time PCR). Allergen-specific T-cell lines were analyzed for epitope recognition. RESULTS: Orally administered Bet v 1 transiently reduced Bet v 1-specific serum IgE levels, as well as Bet v 1- and Mal d 1-induced T-cell proliferation, and enhanced the expression of IL-5, IL-10, and Foxp3. Orally applied Mal d 1 significantly decreased Bet v 1- and Mal d 1-specific IgE levels and induced IL-5 and IL-10 but no Foxp3 expression. In contrast to Bet v 1, Mal d 1 triggered IFN-γ production and T cells with a different epitope repertoire. Inhalation of birch pollen significantly enhanced allergen-specific IgE levels, T-cell proliferation, and IL-5, IL-10, IL-13, and Foxp3 expression. CONCLUSION: Two sublingual administrations of 50 µg of Mal d 1 were well tolerated and induced transient immune responses seen during peripheral tolerance development. Thus recombinant Mal d 1 might be suitable and relevant for sublingual treatment of birch pollen-related apple allergy.


Assuntos
Antígenos de Plantas/imunologia , Betula/imunologia , Proteínas de Plantas/imunologia , Pólen/imunologia , Rinite Alérgica Sazonal/imunologia , Administração Oral , Adulto , Antígenos de Plantas/administração & dosagem , Citocinas/imunologia , Citocinas/metabolismo , Epitopos/imunologia , Feminino , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas de Plantas/administração & dosagem , Rinite Alérgica Sazonal/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adulto Jovem
18.
BMC Immunol ; 13: 43, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22871092

RESUMO

BACKGROUND: Mugwort pollen allergens represent the main cause of pollinosis in late summer. The major allergen, Art v 1, contains only one single immunodominant, solely HLA-DR-restricted T cell epitope (Art v 125-36). The frequency of HLA-DRB1*01 is highly increased in mugwort-allergic individuals and HLA-DR1 serves as restriction element for Art v 125-36. However, Art v 125-36 also binds to HLA-DR4 with high affinity and DR1-restricted Art v 125-36 -specific T cell receptors can be activated by HLA-DR4 molecules. To understand the predominance of HLA-DR1 in mugwort allergy in spite of the degeneracy in HLA/peptide-binding and TCR-recognition, we investigated the molecular background of Art v 125-36 /MHC/TCR interactions in the context of HLA-DR1 compared to -DR4. RESULTS: The majority of Art v 125-36 -specific T cell lines and clones from HLA-DR1 carrying, mugwort pollen-allergic donors reacted to synthetic and naturally processed Art v 1-peptides when presented by HLA-DR1 or HLA-DR4 expressing antigen presenting cells. However, at limiting peptide concentrations DR1 was more effective in T cell stimulation. In addition, the minimal epitope for 50% of Art v 125-36 -specific T cells was shorter for DR1 than for DR4. In vitro binding assays of Art v 125-36 mutant peptides to isolated DR1- and DR4-molecules indicated similar binding capacities and use of the same register. In silico simulation of Art v 125-36 binding to HLA-DR1 and -DR4 suggested similar binding of the central part of the peptide to either molecule, but a higher flexibility of the N- and C-terminal amino acids and detachment at the C-terminus in HLA-DR1. CONCLUSIONS: The predominance of HLA-DR1 in the response to Art v 125-36 may be explained by subtle conformation changes of the peptide bound to DR1 compared to DR4. Computer simulation supported our experimental data by demonstrating differences in peptide mobility within the HLA-DR complex that may influence TCR-binding. We suggest that the minor differences observed in vitro may be more relevant in the microenvironment in vivo, so that only presentation by HLA-DR1, but not -DR4 permits successful T cell activation.


Assuntos
Alérgenos/imunologia , Antígenos de Plantas/imunologia , Artemisia/química , Antígeno HLA-DR1/imunologia , Antígeno HLA-DR4/imunologia , Hipersensibilidade/imunologia , Proteínas de Plantas/imunologia , Pólen/imunologia , Alérgenos/química , Sequência de Aminoácidos , Apresentação de Antígeno/imunologia , Células Apresentadoras de Antígenos/imunologia , Antígenos de Plantas/química , Simulação por Computador , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Peptídeos/química , Peptídeos/imunologia , Proteínas de Plantas/química , Ligação Proteica/imunologia
19.
J Immunol ; 189(6): 3018-25, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22904302

RESUMO

Wheat is an essential element in our nutrition but one of the most important food allergen sources. Wheat allergic patients often suffer from severe gastrointestinal and systemic allergic reactions after wheat ingestion. In this study, we report the molecular and immunological characterization of a new major wheat food allergen, Tri a 36. The cDNA coding for a C-terminal fragment of Tri a 36 was isolated by screening a wheat seed cDNA expression library with serum IgE from wheat food-allergic patients. Tri a 36 is a 369-aa protein with a hydrophobic 25-aa N-terminal leader peptide. According to sequence comparison it belongs to the low m.w. glutenin subunits, which can be found in a variety of cereals. The mature allergen contains an N-terminal domain, a repetitive domain that is rich in glutamine and proline residues, and three C-terminal domains with eight cysteine residues contributing to intra- and intermolecular disulfide bonds. Recombinant Tri a 36 was expressed in Escherichia coli and purified as soluble protein. It reacted with IgE Abs of ∼80% of wheat food-allergic patients, showed IgE cross-reactivity with related allergens in rye, barley, oat, spelt, and rice, and induced specific and dose-dependent basophil activation. Even after extensive in vitro gastric and duodenal digestion, Tri a 36 released distinct IgE-reactive fragments and was highly resistant against boiling. Thus, recombinant Tri a 36 is a major wheat food allergen that can be used for the molecular diagnosis of, and for the development of specific immunotherapy strategies against, wheat food allergy.


Assuntos
Alérgenos/efeitos adversos , Alérgenos/química , Antígenos de Plantas/efeitos adversos , Antígenos de Plantas/química , Glutens/efeitos adversos , Glutens/química , Hipersensibilidade a Trigo/imunologia , Adolescente , Alérgenos/imunologia , Sequência de Aminoácidos , Animais , Antígenos de Plantas/imunologia , Criança , Pré-Escolar , Reações Cruzadas , Grão Comestível/efeitos adversos , Grão Comestível/imunologia , Feminino , Glutens/imunologia , Humanos , Imunoglobulina E/biossíntese , Masculino , Dados de Sequência Molecular , Peso Molecular , Ratos , Homologia de Sequência de Aminoácidos , Hipersensibilidade a Trigo/etiologia
20.
J Immunol ; 188(3): 1559-67, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22205029

RESUMO

Ragweed and mugwort are closely related weeds that represent the major cause of pollen allergy in late summer. Concomitant sensitization and clinical cross-reactivity frequently occur in subjects who are coexposed to both pollen species, and have implications for diagnosis and specific immunotherapy. Molecules involved in this cross-reactivity might be Amb a 1, the major ragweed pollen allergen, and Art v 6, a highly homologous allergen from mugwort. Therefore, we investigated the IgE and T cell response to Art v 6 of 60 weed pollen-allergic patients and assessed its immunological cross-reactivity with Amb a 1. Results of ELISA inhibition experiments suggested that both allergens are largely cross-reactive, but Amb a 1 possesses more IgE epitopes than Art v 6. In patients with IgE to both allergens, Amb a 1-induced T cell lines and clones responded weakly to Art v 6. Moreover, Art v 6-induced T cell lines responded stronger to Amb a 1. T cell epitope mapping of Art v 6 revealed that it contains only a few cross-reactive epitopes, which is opposed to the multiple T cell-activating regions present in Amb a 1. In summary, Amb a 1 can elicit more diverse allergen-specific IgE and T cell responses than Art v 6 and dominates the cross-reactivity with its homolog. Nevertheless, Art v 6 can act as a primary sensitizing allergen in areas with high mugwort pollen exposure, and consequently may facilitate sensitization to Amb a 1 by epitope cross-recognition of T and B cells.


Assuntos
Alérgenos/imunologia , Ambrosia/imunologia , Artemisia/imunologia , Reações Cruzadas/imunologia , Antígenos de Plantas/imunologia , Linfócitos B/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Humanos , Imunoglobulina E/imunologia , Proteínas de Plantas/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA