Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Gastroenterol Hepatol ; 12(4): 1311-1327, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111601

RESUMO

BACKGROUND & AIMS: In colorectal cancer, approximately 95% of patients are refractory to immunotherapy because of low antitumor immune responses. Therefore, there is an exigent need to develop treatments that increase antitumor immune responses and decrease tumor burden to enhance immunotherapy. METHODS: The gut microbiome has been described as a master modulator of immune responses. We administered the human commensal, Lactobacillus rhamnosus GG (LGG), to mice and characterized the changes in the gut immune landscape. Because the presence of lactobacilli in the gut microbiome has been linked with decreased tumor burden and antitumor immune responses, we also supplemented a genetic and a chemical model of murine intestinal cancer with LGG. For clinical relevance, we therapeutically administered LGG after tumors had formed. We also tested for the requirement of CD8 T cells in LGG-mediated modulation of gut tumor burden. RESULTS: We detected increased colonic CD8 T-cell responses specifically in LGG-supplemented mice. The CD8 T-cell induction was dependent on dendritic cell activation mediated via Toll-like receptor-2, thereby describing a novel mechanism in which a member of the human microbiome induces an intestinal CD8 T-cell response. We also show that LGG decreased tumor burden in the murine gut cancer models by a CD8 T-cell-dependent manner. CONCLUSIONS: These data support the potential use of LGG to augment antitumor immune responses in colorectal cancer patients and ultimately for increasing the breadth and efficacy of immunotherapy.


Assuntos
Imunidade , Imunomodulação , Lacticaseibacillus rhamnosus/imunologia , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Comunicação Celular , Colo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/terapia , Probióticos/administração & dosagem , Transdução de Sinais , Receptor 2 Toll-Like/metabolismo , Carga Tumoral
2.
Cell Metab ; 31(5): 956-968.e5, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32213347

RESUMO

Many studies have suggested a role for gut-resident microbes (the "gut microbiome") in modulating host health; however, the mechanisms by which they impact systemic physiology remain largely unknown. In this study, metabolomic and transcriptional profiling of germ-free and conventionalized mouse liver revealed an upregulation of the Nrf2 antioxidant and xenobiotic response in microbiome-replete animals. Using a Drosophila-based screening assay, we identified members of the genus Lactobacillus capable of stimulating Nrf2. Indeed, the human commensal Lactobacillus rhamnosus GG (LGG) potently activated Nrf2 in the Drosophila liver analog and the murine liver. This activation was sufficient to protect against two models of oxidative liver injury, acetaminophen overdose and acute ethanol toxicity. Characterization of the portal circulation of LGG-treated mice by tandem mass spectrometry identified a small molecule activator of Nrf2, 5-methoxyindoleacetic acid, produced by LGG. Taken together, these data demonstrate a mechanism by which intestinal microbes modulate hepatic susceptibility to oxidative injury.


Assuntos
Lacticaseibacillus rhamnosus/metabolismo , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Drosophila , Microbioma Gastrointestinal , Células Hep G2 , Humanos , Fígado/lesões , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/deficiência , Oxirredução , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA