Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Sci Total Environ ; 912: 169213, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38097066

RESUMO

A dual-growth-limited continuous operated bioreactor (chemostat) was used to enhance lipid accumulation in an enrichment culture of microalgae. The light intensity and nitrogen concentration where both limiting factors resulting in high lipid accumulation in the mixed culture. Both conditions of light and nitrogen excess and deficiency were tested. Strategies to selectively enrich for a phototrophic lipid-storing community, based on the use of different nitrogen sources (ammonium vs. nitrate) and vitamin B supplementation in the growth medium, were evaluated. The dual limitation of both nitrogen and light enhanced the accumulation of storage compounds. Ammoniacal nitrogen was the preferred nitrogen source. Vitamin B supplementation led to a doubling of the lipid productivity. The availability of vitamins played a key role in selecting an efficient lipid-storing community, primarily consisting of Trebouxiophyceae (with an 82 % relative abundance among eukaryotic microorganisms). The obtained lipid volumetric productivity (387 mg L-1 d-1) was among the highest reported in literature for microalgae bioreactors. Lipid production by the microalgae enrichment surpassed the efficiencies reported for continuous microalgae pure cultures, highlighting the benefits of mixed-culture photo-biotechnologies for fuels and food ingredients in the circular economy.


Assuntos
Microalgas , Reatores Biológicos , Nitrogênio , Lipídeos , Vitaminas , Biomassa
2.
Environ Sci Pollut Res Int ; 27(35): 43711-43723, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32740841

RESUMO

Microbial fuel cell (MFC) is a green technology that converts the stored chemical energy of organic matter to electricity; therefore, it can be used for wastewater purification and energy production simultaneously. In this study, three kinds of dairy products, including milk, cheese water, and yogurt water, were mixed with Acid orange 7 (AO7) as the model wastewater and used as the anolyte of an MFC. The capability of the system in energy production and dye removal was also investigated. The FESEM images were used to investigate the biofilms attachment to the anodes. Moreover, the polarization curves, electrochemical impedance spectroscopy, cyclic voltammetry (CV), voltage-time profiles, and coulombic efficiency were used to evaluate the electrochemical activity of the MFCs. Based on the CV results, the biofilm formation significantly improved the electrochemical activity of the electrodes. Maximum power density, voltage, and coulombic efficiency were obtained as 44.05 mW.m-2, 332.4 mV, and 1.76%, respectively, for cheese water + AO7 anolyte, but the milk + AO7 MFC produced a stable voltage for a long time and its performance was similar to the cheese water + AO7 anolyte. Maximum COD removal and decolorization efficiencies were obtained equal to 84.57 and 92.18% for yogurt water + AO7 and cheese water + AO7 anolytes, respectively.


Assuntos
Fontes de Energia Bioelétrica , Biofilmes , Eletricidade , Eletrodos , Águas Residuárias
3.
Biotechnol Rep (Amst) ; 25: e00433, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32090025

RESUMO

The dewatering of algal culture requires coagulation of the algal cells. However, the coagulation in a continuous operation is slowed down through the excretion of Soluble Algal Products (SAPs). Electrocoagulation (EC), already utilized as a coagulation technique, has been investigated for its effects on SAPs characterizations. A mixed culture of Chlorella vulgaris, Scenedesmus Obliquus, Botryococcus braunii, Botryococcus sudeticus, and Afrocarpus falcatus was prepared and SAPs characteristics, including Specific Ultra Violet Absorbance (SUVA), Zeta potential, Molecular Weight (MW) fractionation, Dissolved Organic Carbon (DOC), protein and carbohydrate content, Excitation-Emission Matrix, and hydrophobicity using XAD resins, were measured and evaluated before and after electrocoagulation using mild steel and aluminum electrodes at 5 and 10 min. The results showed several improvements after EC. According to results, EC can render SAPs hydrophobicity up to 95 %, and the fluorescence peak results showed the complete removal of humic-like. Moreover, the SAPs were removed up to 21, 60, and 47 % for protein, carbohydrate and DOC, respectively. Results collectively showed that electrocoagulation might be able to mitigate the negative effects of growth on flocculation.

4.
Front Bioeng Biotechnol ; 8: 557234, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33392158

RESUMO

Mixed-culture biotechnologies are widely used to capture nutrients from wastewater. Purple non-sulfur bacteria (PNSB), a guild of anoxygenic photomixotrophic organisms, rise interest for their ability to directly assimilate nutrients in the biomass. One challenge targets the aggregation and accumulation of PNSB biomass to separate it from the treated water. Our aim was to enrich and produce a concentrated, fast-settling PNSB biomass with high nutrient removal capacity in a 1.5-L, stirred-tank, anaerobic sequencing-batch photobioreactor (SBR). PNSB were rapidly enriched after inoculation with activated sludge at 0.1 gVSS L-1 in a first batch of 24 h under continuous irradiance of infrared (IR) light (>700 nm) at 375 W m-2, with Rhodobacter reaching 54% of amplicon sequencing read counts. SBR operations with decreasing hydraulic retention times (48 to 16 h, i.e., 1-3 cycles d-1) and increasing volumetric organic loading rates (0.2-1.3 kg COD d-1 m-3) stimulated biomass aggregation, settling, and accumulation in the system, reaching as high as 3.8 g VSS L-1. The sludge retention time (SRT) increased freely from 2.5 to 11 days. Acetate, ammonium, and orthophosphate were removed up to 96% at a rate of 1.1 kg COD d-1 m-3, 77% at 113 g N d-1 m-3, and 73% at 15 g P d-1 m-3, respectively, with COD:N:P assimilation ratio of 100:6.7:0.9 m/m/m. SBR regime shifts sequentially selected for Rhodobacter (90%) under shorter SRT and non-limiting concentration of acetate during reaction phases, for Rhodopseudomonas (70%) under longer SRT and acetate limitation during reaction, and Blastochloris (10%) under higher biomass concentrations, underlying competition for substrate and photons in the PNSB guild. With SBR operations we produced a fast-settling biomass, highly (>90%) enriched in PNSB. A high nutrient removal was achieved by biomass assimilation, reaching the European nutrient discharge limits. We opened further insights on the microbial ecology of PNSB-based processes for water resource recovery.

5.
Artigo em Inglês | MEDLINE | ID: mdl-31828067

RESUMO

Oleaginous yeast Yarrowia lipolytica is a prospective host for production of succinic acid. The interruption of tricarboxylic acid cycle through succinate dehydrogenase gene (SDH) deletion was reported to result in strains incapable of glucose utilization and this ability had to be restored by chemical mutation or long adaptive laboratory evolution. In this study, a succinate producing strain of Y. lipolytica was engineered by truncating the promoter of SDH1 gene, which resulted in 77% reduction in SDH activity but did not impair the ability of the strain to grow on glucose. The flux toward succinic acid was further improved by overexpressing the genes in the glyoxylate pathway and the oxidative TCA branch, and expressing phosphoenolpyruvate carboxykinase from Actinobacillus succinogenes. A short adaptation on glucose reduced the lag phase of the strain and increased its tolerance to high glucose concentrations. The resulting strain produced 7.8 ± 0.0 g/L succinic acid with a yield of 0.105 g/g glucose in shake flasks without pH control, while mannitol (11.8 ± 0.8 g/L) was the main by-product. Further investigations showed that mannitol accumulation was caused by low pH stress and buffering the fermentation medium eliminated mannitol formation. In a fed-batch bioreactor in mineral medium at pH 5, at which point according to Ka values of succinic acid, the major fraction of product was in acidic form rather than dissociated form, the strain produced 35.3 ± 1.5 g/L succinic acid with 0.26 ± 0.00 g/g glucose yield.

6.
Environ Sci Pollut Res Int ; 26(2): 1124-1141, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28567682

RESUMO

This article summarizes several developed and industrial technologies for nitrate removal from drinking water, including physicochemical and biological techniques, with a focus on autotrophic nitrate removal. Approaches are primarily classified into separation-based and elimination-based methods according to the fate of the nitrate in water treatment. Biological denitrification as a cost-effective and promising method of biological nitrate elimination is reviewed in terms of its removal process, applicability, efficiency, and associated disadvantages. The various pathways during biological nitrate removal, including assimilatory and dissimilatory nitrate reduction, are also explained. A comparative study was carried out to provide a better understanding of the advantages and disadvantages of autotrophic and heterotrophic denitrification. Sulfur-based and hydrogen-based denitrifications, which are the most common autotrophic processes of nitrate removal, are reviewed with the aim of presenting the salient features of hydrogenotrophic denitrification along with some drawbacks of the technology and research areas in which it could be used but currently is not. The application of algae-based water treatment is also introduced as a nature-inspired approach that may broaden future horizons of nitrate removal technology.


Assuntos
Água Potável/química , Nitratos/análise , Poluentes da Água/análise , Purificação da Água/métodos , Desnitrificação
7.
Biotechnol Bioeng ; 115(5): 1152-1160, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29337346

RESUMO

The present study investigated the interaction between starch and lipid accumulation in a green microalgae enrichment culture. The objective was to optimize the lipid content by manipulation of the medium in regular batch culture. Two medium designs were evaluated: First a high ortho-P concentration with vitamin supplementary (Pi-vitamins supplemented medium), second normal growth medium (control). Both media contained a low amount of nitrogen which was consumed during batch growth in three days. The batch experiments continued for another 4 days with the absence of soluble nitrogen in the medium. When the mixed microalgal culture was incubated in the Pi-vitamin supplemented medium, the lipid, and starch content of the culture increased within the first 3 days to 102.0 ± 5.2 mg/L (12.7 ± 0.6% of DW) and 31.7 ± 1.6 mg/L (4.0 ± 0.2% of DW), respectively. On the last day of the experiment, the lipid, and starch content in Pi-vitamin medium increased to 663.1 ± 32.5 mg/L (33.4 ± 1.6% of DW) and 127.5 ± 5.2 mg/L (6.4 ± 0.3% of DW). However, the lipid and starch content in the control process, reached to 334.7 ± 16.4 mg/L (20.1 ± 1.0% of DW) and 94.3 ± 4.6 mg/L (5.7 ± 0.3% of DW), respectively. The high Pi-vitamin medium induced storing lipid formation clearly while the starch formation was not affected. The lipid contents reported here are among the high reported in the literature, note that already under full growth conditions significant lipid levels occurred in the algal enrichment culture. The high lipid productivity of the reported mixed microalgae culture provides an efficient route for efficient algal biodiesel production.


Assuntos
Metabolismo dos Carboidratos , Meios de Cultura/química , Metabolismo dos Lipídeos , Microalgas/metabolismo , Microalgas/crescimento & desenvolvimento , Nitrogênio/metabolismo , Fósforo/metabolismo
8.
J Prosthet Dent ; 119(2): 292-298, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28552288

RESUMO

STATEMENT OF PROBLEM: Acrylic resin denture base resins are colonized by oral and nonoral bacteria and Candida species. This reservoir of microorganism causes denture stomatitis, which can be implicated in some life-threating infections in older denture wearers. PURPOSE: The purpose of this in vitro study was to incorporate quaternized N,N-dimethylaminoethyl methacrylate (DMAEMA) monomer into a denture base resin and investigate its antimicrobial and mechanical properties. MATERIAL AND METHODS: Quaternized ammonium monomer (QAM) was synthesized through the reaction of octyl bromide and DMAEMA. The synthesized QAM was incorporated into a denture base resin system (8 to 12 wt%). The resulting material was characterized by Fourier transform infrared spectroscopy. The in vitro antimicrobial property was determined by direct contact test against Escherichia coli, Staphylococcus aureus, and Candida albicans. Release of the QAM was also tested by means of an agar diffusion test. Mechanical properties were measured with a 3-point bend test, and results were analyzed and compared using ANOVA and the Tukey post hoc test (α=.05). RESULTS: Spectroscopy confirmed the formation of quaternized ammonium modified denture base (QAMDB). The decrease in number of viable cells of E coli, S aureus, and C albicans was more than 99% for 12%-QAMDB in comparison with that of the control groups. An overall decline was observed in the flexural strength and flexural modulus of the fabricated resins (P<.05), but no differences were observed for strain at break or fracture work of the specimens (P>.05). CONCLUSIONS: Denture base resins containing immobilized QAM provided high antibacterial activity, but the flexural strength and flexural modulus of the denture base resins decreased.


Assuntos
Anti-Infecciosos/uso terapêutico , Bases de Dentadura , Resinas Acrílicas/uso terapêutico , Bases de Dentadura/efeitos adversos , Bases de Dentadura/microbiologia , Planejamento de Dentadura/métodos , Humanos , Técnicas In Vitro , Metacrilatos/uso terapêutico
9.
J Ind Microbiol Biotechnol ; 42(10): 1363-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26264929

RESUMO

This article presents a model-based evaluation of ferrous iron oxidation in chemostat and biofilm airlift reactors inoculated with a mixed culture of Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans bacteria. The competition between the two types of bacteria in the chemostat and in the biofilm airlift reactors together with the distribution of both bacteria along the biofilm thickness at different time sections has been studied. The bacterial distribution profiles along the biofilm in the airlift reactor at different time scales show that in the beginning A. ferrooxidans bacteria are dominant, but when the reactor operates for a long time the desirable L. ferrooxidans species outcompete A. ferrooxidans as a result of the low Fe(2+) and high Fe(3+) concentrations. The results obtained from the simulation were compared with the experimental data of continuously operated internal loop airlift biofilm reactor. The model results are in good agreement with the experimental results.


Assuntos
Bactérias/metabolismo , Biofilmes , Reatores Biológicos , Compostos Ferrosos/metabolismo , Ferro/metabolismo , Acidithiobacillus/metabolismo , Acidithiobacillus/fisiologia , Oxirredução
10.
Bioresour Technol ; 196: 17-21, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26218537

RESUMO

This study presents gravimetric enrichment of mixed culture to screen starch and lipid producing species separately in a sequencing batch reactor. In the enriched starch-producing mixed culture photobioreactor, the starch content at the end of steady state batch became 3.42 times the beginning of depletion. Whereas in the enriched lipid-producing photobioreactor, the lipid content at the end of steady state batch became 3 times the beginning of famine phase. The obtained results revealed that the gravimetric enrichment is a suitable screening method for specific production of storage compounds in none-sterile large-scaled condition.


Assuntos
Biotecnologia/métodos , Lipídeos/química , Microalgas/metabolismo , Amido/metabolismo , Técnicas de Cultura Celular por Lotes , Nitrogênio/farmacologia , Fotobiorreatores/microbiologia , Proteínas/análise
11.
Biotechnol Lett ; 36(10): 1987-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24930101

RESUMO

The use of commercial electrodes as cathodes in a single-chamber microbial electrolysis cell has been investigated. The cell was operated in sequencing batch mode and the performance of the electrodes was compared with carbon cloth containing 0.5 mg Pt cm(-2). Overall H2 recovery [Formula: see text] was 66.7 ± 1.4, 58.7 ± 1.1 and 55.5 ± 1.5 % for Pt/CC, Ni and Ti mesh electrodes, respectively. Columbic efficiencies of the three cathodes were in the same range (74.8 ± 1.5, 77.6 ± 1.7 and 75.7 ± 1.2 % for Pt/CC, Ni and Ti mesh electrodes, respectively). A similar performance for the three cathodes under near-neutral pH and ambient temperature was obtained. The commercial electrodes are much cheaper than carbon cloth containing Pt. Low cost and good performance of these electrodes suggest they are suitable cathode materials for large scale application.


Assuntos
Eletrólise/instrumentação , Hidrogênio/metabolismo , Bactérias/metabolismo , Eletrodos , Eletrólise/economia , Eletrólise/métodos
12.
Front Microbiol ; 3: 332, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22993513

RESUMO

Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment plants (WWTP) over start-up periods of maximum 60 days. Five bubble-column sequencing batch reactors were operated with feast-famine regimes consisting of rapid pulse or slow anaerobic feeding followed by aerobic starvation. Slow-settling fluffy granules were formed when an insufficient superficial air velocity (SAV; 1.8 cm s(-1)) was applied, when the inoculation sludge was taken from a WWTP removing organic matter only, or when reactors were operated at 30°C. Fast-settling dense granules were obtained with 4.0 cm s(-1) SAV, or when the inoculation sludge was taken from a WWTP removing all nutrients biologically. However, only carbon was aerobically removed during start-up. Fluffy granules and dense granules were displaying distinct predominant phylotypes, namely filamentous Burkholderiales affiliates and Zoogloea relatives, respectively. The latter were predominant in dense granules independently from the feeding regime. A combination of insufficient solid retention time and of leakage of acetate into the aeration phase during intensive biomass wash-out was the cause for the proliferation of Zoogloea spp. in dense granules, and for the deterioration of BNR performances. It is however not certain that Zoogloea-like organisms are essential in granule formation. Optimal operation conditions should be elucidated for maintaining a balance between organisms with granulation propensity and nutrient removing organisms in order to form granules with BNR activities in short start-up periods.

13.
Biotechnol Lett ; 34(8): 1483-6, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22547038

RESUMO

Current generation using nitrite as substrate (pH 6.9, 40 mgN l(-1)) in a nitrite-fed microbial fuel cell was investigated under anaerobic and aerobic anodic conditions as an alternative to the biological nitrite oxidation process. Cell current, coulombic efficiency (CE) and power generation of 0.04 mA, 30 ± 2 % and 19.3 ± 3.3 µW m(-2), respectively, were observed under anaerobic conditions while complete nitrite degradation (no current) was obtained under aerobic conditions. Switching from aerobic to anaerobic anode enhanced the CE and power generation (39 ± 1 % and 29 ± 4.3 µW m(-2)).


Assuntos
Bactérias/metabolismo , Fontes de Energia Bioelétrica/microbiologia , Nitritos/metabolismo , Aerobiose , Anaerobiose , Eletricidade , Nitratos/análise , Nitratos/metabolismo , Nitritos/análise , Oxirredução
14.
Appl Microbiol Biotechnol ; 87(4): 1555-68, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20461512

RESUMO

Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.


Assuntos
Bactérias/isolamento & purificação , Biodiversidade , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Aerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Dados de Sequência Molecular , Filogenia , Esgotos/química , Temperatura
15.
Ecotoxicol Environ Saf ; 69(3): 546-55, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18155146

RESUMO

To shorten phototreatment time is of major concern for the cost and energy benefits of the xenobiotics degradation performed by photocatalytic processes. Using photo-Fenton and TiO(2) phototreatments, partially photodegraded solutions of 6 separate pesticides (alachlor, atrazine, chlorfenvinphos, diuron, isoproturon and pentachlorophenol) were tested for biocompatibility, which was evaluated according to the Zahn-Wellens procedure. This study investigated if Microtox could be considered as a suitable global indicator capable of giving information on the evolution of biocompatibility of the water solution contaminated with organic pollutants during the phototreatment in order to promote biotreatment. The obtained results demonstrated that biodegradability increased significantly after short photo-Fenton treatment times for alachlor, diuron and pentachlorophenol. Uncertain results were obtained with atrazine and isoproturon. Microtox acute toxicity testing was shown to correctly represent dynamics and efficiency of phototreatment.


Assuntos
Biodegradação Ambiental , Compostos Férricos , Praguicidas/química , Luz Solar , Titânio , Animais , Catalase/efeitos dos fármacos , Catalase/metabolismo , Bovinos , Cinética , Fígado/enzimologia , Praguicidas/toxicidade , Soluções
16.
Biodegradation ; 18(3): 343-50, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17091355

RESUMO

This study focuses on the mass cultivation of bacteria adapted to the degradation of a mixture composed of toluene, ethylbenzene, o-, m- and p-xylenes (TEX). For the cultivation process Substrate Pulse Batch (SPB) technique was adapted under well-automated conditions. The key parameters to be monitored were handled by LabVIEW software including, temperature, pH, dissolved oxygen and turbidity. Other parameters, such as biomass, ammonium or residual substrate concentrations needed offline measurements. SPB technique has been successfully tested experimentally on TEX. The overall behavior of the mixed bacterial population was observed and discussed along the cultivation process. Carbon and nitrogen limitations were shown to affect the integrity of the bacterial cells as well as their production of exopolymeric substances (EPS). Average productivity and yield values successfully reached the industrial specifications, which were 0.45 kg(DW)m(-3) d(-1) and 0.59 g(DW)g (C) (-1) , respectively. Accuracy and reproducibility of the obtained results present the controlled SPB process as a feasible technique.


Assuntos
Adaptação Fisiológica , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Compostos Orgânicos/metabolismo , Derivados de Benzeno/metabolismo , Biodegradação Ambiental , Reatores Biológicos , Carbono , Viabilidade Microbiana , Nitrogênio , Especificidade por Substrato , Tolueno/metabolismo , Volatilização , Xilenos/metabolismo
17.
Biotechnol Bioeng ; 93(2): 238-45, 2006 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-16267850

RESUMO

Monolith reactors combine good mass transfer characteristics with low-pressure drop, the principle factors affecting the cost effectiveness of industrial processes. Recently, these specific features of the monolith reactors have drawn the attention toward the application of the monolith reactor in multiphase reaction systems. In this study, we explore the potential application of monolith reactors as bioreactor requiring gas-liquid mass transfer for substrate supply. It is demonstrated on theoretical grounds that the monolith reactor is a competitive alternative to conventional gas-liquid bioreactors such as stirred tanks, packed beds, and airlift bioreactors because it allows for a significant reduction of the energy dissipation that is normally required for gas-liquid contacting. A potential problem of monolith reactors for biological processes is clogging due to biofilm formation. This paper presents experimental results of a study into the formation and possible removal of biofilms during operation of a monolith reactor as suspended cells bioreactor. The results indicate that biofilm formation may be minimized and postponed by a proper choice of operating conditions. Periodic biofilm removal could straightforwardly be achieved by rinsing with water at moderate pressures and allows for stable operation for prolonged periods of time.


Assuntos
Biofilmes , Reatores Biológicos , Biotecnologia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA