Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18504, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414654

RESUMO

People could have hunted Madagascar's megafauna to extinction, particularly when introduced taxa and drought exacerbated the effects of predation. However, such explanations are difficult to test due to the scarcity of individual sites with unambiguous traces of humans, introduced taxa, and endemic megaherbivores. We excavated three coastal ponds in arid SW Madagascar and present a unique combination of traces of human activity (modified pygmy hippo bone, processed estuarine shell and fish bone, and charcoal), along with bones of extinct megafauna (giant tortoises, pygmy hippos, and elephant birds), extirpated fauna (e.g., crocodiles), and introduced vertebrates (e.g., zebu cattle). The disappearance of megafauna from the study sites at ~ 1000 years ago followed a relatively arid interval and closely coincides with increasingly frequent traces of human foraging, fire, and pastoralism. Our analyses fail to document drought-associated extirpation or multiple millennia of megafauna hunting and suggest that a late combination of hunting, forest clearance, and pastoralism drove extirpations.


Assuntos
Secas , Extinção Biológica , Animais , Humanos , Madagáscar , Vertebrados , Caça , Incêndios
2.
Nature ; 591(7850): 413-419, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33618348

RESUMO

The deep population history of East Asia remains poorly understood owing to a lack of ancient DNA data and sparse sampling of present-day people1,2. Here we report genome-wide data from 166 East Asian individuals dating to between 6000 BC and AD 1000 and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan Plateau are linked by a deeply splitting lineage that probably reflects a coastal migration during the Late Pleistocene epoch. We also follow expansions during the subsequent Holocene epoch from four regions. First, hunter-gatherers from Mongolia and the Amur River Basin have ancestry shared by individuals who speak Mongolic and Tungusic languages, but do not carry ancestry characteristic of farmers from the West Liao River region (around 3000 BC), which contradicts theories that the expansion of these farmers spread the Mongolic and Tungusic proto-languages. Second, farmers from the Yellow River Basin (around 3000 BC) probably spread Sino-Tibetan languages, as their ancestry dispersed both to Tibet-where it forms approximately 84% of the gene pool in some groups-and to the Central Plain, where it has contributed around 59-84% to modern Han Chinese groups. Third, people from Taiwan from around 1300 BC to AD 800 derived approximately 75% of their ancestry from a lineage that is widespread in modern individuals who speak Austronesian, Tai-Kadai and Austroasiatic languages, and that we hypothesize derives from farmers of the Yangtze River Valley. Ancient people from Taiwan also derived about 25% of their ancestry from a northern lineage that is related to, but different from, farmers of the Yellow River Basin, which suggests an additional north-to-south expansion. Fourth, ancestry from Yamnaya Steppe pastoralists arrived in western Mongolia after around 3000 BC but was displaced by previously established lineages even while it persisted in western China, as would be expected if this ancestry was associated with the spread of proto-Tocharian Indo-European languages. Two later gene flows affected western Mongolia: migrants after around 2000 BC with Yamnaya and European farmer ancestry, and episodic influences of later groups with ancestry from Turan.


Assuntos
Genoma Humano/genética , Genômica , Migração Humana/história , China , Produção Agrícola/história , Feminino , Haplótipos/genética , História Antiga , Humanos , Japão , Idioma/história , Masculino , Mongólia , Nepal , Oryza , Polimorfismo de Nucleotídeo Único/genética , Sibéria , Taiwan
3.
Nature ; 590(7844): 103-110, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33361817

RESUMO

Humans settled the Caribbean about 6,000 years ago, and ceramic use and intensified agriculture mark a shift from the Archaic to the Ceramic Age at around 2,500 years ago1-3. Here we report genome-wide data from 174 ancient individuals from The Bahamas, Haiti and the Dominican Republic (collectively, Hispaniola), Puerto Rico, Curaçao and Venezuela, which we co-analysed with 89 previously published ancient individuals. Stone-tool-using Caribbean people, who first entered the Caribbean during the Archaic Age, derive from a deeply divergent population that is closest to Central and northern South American individuals; contrary to previous work4, we find no support for ancestry contributed by a population related to North American individuals. Archaic-related lineages were >98% replaced by a genetically homogeneous ceramic-using population related to speakers of languages in the Arawak family from northeast South America; these people moved through the Lesser Antilles and into the Greater Antilles at least 1,700 years ago, introducing ancestry that is still present. Ancient Caribbean people avoided close kin unions despite limited mate pools that reflect small effective population sizes, which we estimate to be a minimum of 500-1,500 and a maximum of 1,530-8,150 individuals on the combined islands of Puerto Rico and Hispaniola in the dozens of generations before the individuals who we analysed lived. Census sizes are unlikely to be more than tenfold larger than effective population sizes, so previous pan-Caribbean estimates of hundreds of thousands of people are too large5,6. Confirming a small and interconnected Ceramic Age population7, we detect 19 pairs of cross-island cousins, close relatives buried around 75 km apart in Hispaniola and low genetic differentiation across islands. Genetic continuity across transitions in pottery styles reveals that cultural changes during the Ceramic Age were not driven by migration of genetically differentiated groups from the mainland, but instead reflected interactions within an interconnected Caribbean world1,8.


Assuntos
Arqueologia , Genética Populacional , Genoma Humano/genética , Migração Humana/história , Ilhas , Dinâmica Populacional/história , Arqueologia/ética , Região do Caribe , América Central/etnologia , Cerâmica/história , Genética Populacional/ética , Mapeamento Geográfico , Haplótipos , História Antiga , Humanos , Masculino , Densidade Demográfica , América do Sul/etnologia
4.
Science ; 365(6448)2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31147405

RESUMO

How food production first entered eastern Africa ~5000 years ago and the extent to which people moved with livestock is unclear. We present genome-wide data from 41 individuals associated with Later Stone Age, Pastoral Neolithic (PN), and Iron Age contexts in what are now Kenya and Tanzania to examine the genetic impacts of the spreads of herding and farming. Our results support a multiphase model in which admixture between northeastern African-related peoples and eastern African foragers formed multiple pastoralist groups, including a genetically homogeneous PN cluster. Additional admixture with northeastern and western African-related groups occurred by the Iron Age. These findings support several movements of food producers while rejecting models of minimal admixture with foragers and of genetic differentiation between makers of distinct PN artifacts.


Assuntos
Agricultura/história , Genoma Humano , Migração Humana/história , Ocupações/história , DNA Antigo , História Antiga , Humanos , Quênia , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA