Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39485692

RESUMO

OBJECTIVE: Functional vascular imaging is a critical method for early detection and prevention of disease. Established non-contact vascular imaging techniques capture predominantly structural information. In this study, a novel non-contact label-free in vivo Photon Absorption Remote Sensing (PARS) microscope is developed for structural and functional vascular imaging. METHODS: The presented in vivo PARS microscope captures the endogenous absorption of green (532nm) light to form a complete picture of vasculature and surrounding tissues. Imaging system repeatability is enhanced through robust transient absorption signal extraction, and state-of-the-art real-time alignment methods. RESULTS: Detailed imaging of vascular structure is demonstrated through in vivo microscopy of two established animal models: mouse ear and chicken embryo. Preliminary functional contrast is realized through video rate imaging of red blood cell dynamics in the capillary networks of chicken embryos. CONCLUSION: The presented in vivo PARS microscope successfully captures detailed structural and functional vascular contrast. SIGNIFICANCE: This innovative non-contact label-free imaging technique holds promise as a tool for preventative medical care, as functional change often precedes structural change.

2.
IEEE Trans Biomed Eng ; 71(6): 1901-1912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38231822

RESUMO

OBJECTIVE: Pathologists rely on histochemical stains to impart contrast in thin translucent tissue samples, revealing tissue features necessary for identifying pathological conditions. However, the chemical labeling process is destructive and often irreversible or challenging to undo, imposing practical limits on the number of stains that can be applied to the same tissue section. Here we present an automated label-free whole slide scanner using a PARS microscope designed for imaging thin, transmissible samples. METHODS: Peak SNR and in-focus acquisitions are achieved across entire tissue sections using the scattering signal from the PARS detection beam to measure the optimal focal plane. Whole slide images (WSI) are seamlessly stitched together using a custom contrast leveling algorithm. Identical tissue sections are subsequently H&E stained and brightfield imaged. The one-to-one WSIs from both modalities are visually and quantitatively compared. RESULTS: PARS WSIs are presented at standard 40x magnification in malignant human breast and skin samples. We show correspondence of subcellular diagnostic details in both PARS and H&E WSIs and demonstrate virtual H&E staining of an entire PARS WSI. The one-to-one WSI from both modalities show quantitative similarity in nuclear features and structural information. CONCLUSION: PARS WSIs are compatible with existing digital pathology tools, and samples remain suitable for histochemical, immunohistochemical, and other staining techniques. SIGNIFICANCE: This work is a critical advance for integrating label-free optical methods into standard histopathology workflows.


Assuntos
Neoplasias da Mama , Microscopia , Humanos , Microscopia/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Tecnologia de Sensoriamento Remoto/métodos , Algoritmos , Feminino , Processamento de Imagem Assistida por Computador/métodos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/diagnóstico por imagem , Pele/diagnóstico por imagem , Pele/química , Pele/citologia , Fótons , Desenho de Equipamento , Interpretação de Imagem Assistida por Computador/métodos
3.
Sci Rep ; 14(1): 2009, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38263394

RESUMO

Accurate and fast histological staining is crucial in histopathology, impacting diagnostic precision and reliability. Traditional staining methods are time-consuming and subjective, causing delays in diagnosis. Digital pathology plays a vital role in advancing and optimizing histology processes to improve efficiency and reduce turnaround times. This study introduces a novel deep learning-based framework for virtual histological staining using photon absorption remote sensing (PARS) images. By extracting features from PARS time-resolved signals using a variant of the K-means method, valuable multi-modal information is captured. The proposed multi-channel cycleGAN model expands on the traditional cycleGAN framework, allowing the inclusion of additional features. Experimental results reveal that specific combinations of features outperform the conventional channels by improving the labeling of tissue structures prior to model training. Applied to human skin and mouse brain tissue, the results underscore the significance of choosing the optimal combination of features, as it reveals a substantial visual and quantitative concurrence between the virtually stained and the gold standard chemically stained hematoxylin and eosin images, surpassing the performance of other feature combinations. Accurate virtual staining is valuable for reliable diagnostic information, aiding pathologists in disease classification, grading, and treatment planning. This study aims to advance label-free histological imaging and opens doors for intraoperative microscopy applications.


Assuntos
Tecnologia de Sensoriamento Remoto , Humanos , Animais , Camundongos , Reprodutibilidade dos Testes , Amarelo de Eosina-(YS) , Hematoxilina , Coloração e Rotulagem
4.
Curr Oncol ; 30(11): 9760-9771, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37999128

RESUMO

Photon absorption remote sensing (PARS) is a new laser-based microscope technique that permits cellular-level resolution of unstained fresh, frozen, and fixed tissues. Our objective was to determine whether PARS could provide an image quality sufficient for the diagnostic assessment of breast cancer needle core biopsies (NCB). We PARS imaged and virtually H&E stained seven independent unstained formalin-fixed paraffin-embedded breast NCB sections. These identical tissue sections were subsequently stained with standard H&E and digitally scanned. Both the 40× PARS and H&E whole-slide images were assessed by seven breast cancer pathologists, masked to the origin of the images. A concordance analysis was performed to quantify the diagnostic performances of standard H&E and PARS virtual H&E. The PARS images were deemed to be of diagnostic quality, and pathologists were unable to distinguish the image origin, above that expected by chance. The diagnostic concordance on cancer vs. benign was high between PARS and conventional H&E (98% agreement) and there was complete agreement for within-PARS images. Similarly, agreement was substantial (kappa > 0.6) for specific cancer subtypes. PARS virtual H&E inter-rater reliability was broadly consistent with the published literature on diagnostic performance of conventional histology NCBs across all tested histologic features. PARS was able to image unstained tissues slides that were diagnostically equivalent to conventional H&E. Due to its ability to non-destructively image fixed and fresh tissues, and the suitability of the PARS output for artificial intelligence assistance in diagnosis, this technology has the potential to improve the speed and accuracy of breast cancer diagnosis.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Humanos , Feminino , Reprodutibilidade dos Testes , Tecnologia de Sensoriamento Remoto , Neoplasias da Mama/patologia , Biópsia
5.
Opt Lett ; 47(15): 3952-3955, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913356

RESUMO

Photoacoustic remote sensing (PARS) microscopy is an emerging label-free optical absorption imaging modality. PARS operates by capturing nanosecond-scale optical fluctuations produced by photoacoustic pressures. These time-domain (TD) variations are usually projected by amplitude to determine optical absorption magnitude. However, valuable details on a target's material properties (e.g., density, speed of sound) are contained within the TD signals. This work uses a novel, to the best of our knowledge, clustering method to learn TD features, based on signal shape, which relate to underlying material traits. A modified K-means method is used to cluster TD data, capturing representative signal features. These features are then used to form virtual colorizations which may highlight tissues based on their underlying material properties. Applied in fresh resected murine brain tissue, colorized visualizations highlight distinct regions of tissue. This may potentially facilitate differentiation of tissue constituents (e.g., myelinated and unmyelinated axons, cell nuclei) in a single acquisition.


Assuntos
Microscopia , Técnicas Fotoacústicas , Animais , Camundongos , Microscopia/métodos , Técnicas Fotoacústicas/métodos , Tecnologia de Sensoriamento Remoto , Análise Espectral
6.
Sci Rep ; 12(1): 10296, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717539

RESUMO

Histopathological visualizations are a pillar of modern medicine and biological research. Surgical oncology relies exclusively on post-operative histology to determine definitive surgical success and guide adjuvant treatments. The current histology workflow is based on bright-field microscopic assessment of histochemical stained tissues and has some major limitations. For example, the preparation of stained specimens for brightfield assessment requires lengthy sample processing, delaying interventions for days or even weeks. Therefore, there is a pressing need for improved histopathology methods. In this paper, we present a deep-learning-based approach for virtual label-free histochemical staining of total-absorption photoacoustic remote sensing (TA-PARS) images of unstained tissue. TA-PARS provides an array of directly measured label-free contrasts such as scattering and total absorption (radiative and non-radiative), ideal for developing H&E colorizations without the need to infer arbitrary tissue structures. We use a Pix2Pix generative adversarial network to develop visualizations analogous to H&E staining from label-free TA-PARS images. Thin sections of human skin tissue were first virtually stained with the TA-PARS, then were chemically stained with H&E producing a one-to-one comparison between the virtual and chemical staining. The one-to-one matched virtually- and chemically- stained images exhibit high concordance validating the digital colorization of the TA-PARS images against the gold standard H&E. TA-PARS images were reviewed by four dermatologic pathologists who confirmed they are of diagnostic quality, and that resolution, contrast, and color permitted interpretation as if they were H&E. The presented approach paves the way for the development of TA-PARS slide-free histological imaging, which promises to dramatically reduce the time from specimen resection to histological imaging.


Assuntos
Microscopia , Tecnologia de Sensoriamento Remoto , Humanos , Microscopia/métodos , Microtomia , Coloração e Rotulagem , Fluxo de Trabalho
7.
Sci Rep ; 12(1): 8464, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589763

RESUMO

In the past decades, absorption modalities have emerged as powerful tools for label-free functional and structural imaging of cells and tissues. Many biomolecules present unique absorption spectra providing chromophore-specific information on properties such as chemical bonding, and sample composition. As chromophores absorb photons the absorbed energy is emitted as photons (radiative relaxation) or converted to heat and under specific conditions pressure (non-radiative relaxation). Modalities like fluorescence microscopy may capture radiative relaxation to provide contrast, while modalities like photoacoustic microscopy may leverage non-radiative heat and pressures. Here we show an all-optical non-contact total-absorption photoacoustic remote sensing (TA-PARS) microscope, which can capture both radiative and non-radiative absorption effects in a single acquisition. The TA-PARS yields an absorption metric proposed as the quantum efficiency ratio (QER), which visualizes a biomolecule's proportional radiative and non-radiative absorption response. The TA-PARS provides label-free visualization of a range of biomolecules enabling convincing analogues to traditional histochemical staining of tissues, effectively providing label-free Hematoxylin and Eosin (H&E)-like visualizations. These findings establish an effective all-optical non-contact total-absorption microscope for label-free inspection of biological materials.


Assuntos
Técnicas Fotoacústicas , Amarelo de Eosina-(YS) , Hematoxilina , Microscopia de Fluorescência , Técnicas Fotoacústicas/métodos , Tecnologia de Sensoriamento Remoto/métodos
8.
Opt Express ; 29(19): 29745-29754, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614713

RESUMO

Stimulated Raman scattering (SRS) has been widely used in functional photoacoustic microscopy to generate multiwavelength light and target multiple chromophores inside tissues. Despite offering a simple, cost-effective technique with a high pulse repetition rate; it suffers from pulse-to-pulse intensity fluctuations and power drift that can affect image quality. Here, we propose a new technique to improve the temporal stability of the pulsed SRS multiwavelength source. We achieve this by lowering the temperature of the SRS medium. The results suggest that a decrease in temperature causes an improvement of temporal stability of the output, considerable rise in the intensity of the SRS peaks, and significant increase of SRS cross section. The application of the method is shown for in vivo functional imaging of capillary networks in a chicken embryo chorioallantois membrane using photoacoustic remote sensing microscopy.


Assuntos
Luz , Técnicas Fotoacústicas/métodos , Tecnologia de Sensoriamento Remoto/métodos , Análise Espectral Raman/métodos , Temperatura , Animais , Capilares/diagnóstico por imagem , Embrião de Galinha/irrigação sanguínea , Desenho de Equipamento , Microscopia/métodos
9.
Sci Rep ; 11(1): 13723, 2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34215785

RESUMO

Histological images are critical in the diagnosis and treatment of cancers. Unfortunately, current methods for capturing these microscopy images require resource intensive tissue preparation that may delay diagnosis for days or weeks. To streamline this process, clinicians are limited to assessing small macroscopically representative subsets of tissues. Here, a combined photoacoustic remote sensing (PARS) microscope and swept source optical coherence tomography system designed to circumvent these diagnostic limitations is presented. The proposed multimodal microscope provides label-free three-dimensional depth resolved virtual histology visualizations, capturing nuclear and extranuclear tissue morphology directly on thick unprocessed specimens. The capabilities of the proposed method are demonstrated directly in unprocessed formalin fixed resected tissues. The first images of nuclear contrast in resected human tissues, and the first three-dimensional visualization of subsurface nuclear morphology in resected Rattus tissues, captured with a non-contact photoacoustic system are presented here. Moreover, the proposed system captures the first co-registered OCT and PARS images enabling direct histological assessment of unprocessed tissues. This work represents a vital step towards the development of a rapid histological imaging modality to circumvent the limitations of current histopathology techniques.


Assuntos
Imageamento Tridimensional/métodos , Neoplasias/patologia , Tecnologia de Sensoriamento Remoto/métodos , Tomografia de Coerência Óptica , Animais , Técnicas Histológicas/tendências , Humanos , Microscopia , Neoplasias/diagnóstico , Técnicas Fotoacústicas/métodos , Ratos , Realidade Virtual
10.
J Biomed Opt ; 26(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34080401

RESUMO

The errata correct the errors in citation numbering that appeared in the originally published article.

11.
J Biomed Opt ; 26(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34036757

RESUMO

SIGNIFICANCE: Histopathological analysis of tissues is an essential tool for grading, staging, diagnosing, and resecting cancers and other malignancies. Current histopathological imaging techniques require substantial sample processing, prior to staining with hematoxylin and eosin (H&E) dyes, to highlight nuclear and cellular morphology. Sample preparation and staining is resource intensive and introduces potential for variability during sample preparation. AIM: We present a method for direct label-free histopathological assessment of formalin-fixed paraffin-embedded tissue blocks and thin tissue sections using a dual-contrast photoacoustic remote sensing (PARS) microscopy system. APPROACH: To emulate the nuclear and cellular contrast of H&E staining, we leverage unique properties of the PARS system. Here, the ultraviolet excitation PARS microscope takes advantage of DNA's unique optical absorption to provide nuclear contrast analogous to hematoxylin staining of cell nuclei. Concurrently, the optical scattering contrast of the PARS detection system is leveraged to provide bulk tissue contrast reminiscent of eosin staining of cell membranes. RESULTS: We demonstrate the efficacy of this technique by imaging human breast tissue and human skin tissues in formalin-fixed paraffin-embedded tissue blocks and frozen sections, respectively. Salient nuclear and extranuclear features such as cancerous cells, glands and ducts, adipocytes, and stromal structures such as collagen are captured. CONCLUSIONS: The presented dual-contrast PARS microscope enables label-free visualization of tissues with contrast and quality comparable to the current gold standard for histopathological analysis. Thus, the proposed system is well positioned to augment existing histopathological workflows, providing histological imaging directly on unstained tissue blocks and sections.


Assuntos
Microscopia , Tecnologia de Sensoriamento Remoto , Amarelo de Eosina-(YS) , Hematoxilina , Humanos , Coloração e Rotulagem
12.
Quant Imaging Med Surg ; 11(3): 1033-1045, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33654675

RESUMO

BACKGROUND: As photoacoustic (PA) techniques progress towards clinical adoption, providing a high-speed live feedback becomes a high priority. To keep up with the instantaneous optical feedback of conventional light microscopes, PA imaging would need to provide a high-resolution video-rate live feed to the user. However, conventional PA microscopy typically trades resolution, sensitivity and imaging speed when optically scanning due to the difficult opto-acoustic confocal geometry. Here, we employ photoacoustic remote sensing (PARS), an all-optical technique that relies on optical confocal geometry, to provide a high-resolution live display in a reflection-mode PA architecture. METHODS: Employing a conventional x-y galvanometer scanner and a 600 KHz pulse repetition rate laser we implement a system capable of acquiring 2.5 frames per second in 2D. To complement this fast scanning optical system, we implement a computationally inexpensive image reconstruction method that is able to render the frames with minimal overhead, providing a live display. RESULTS: Employing the proposed method, we demonstrate a live feedback with frame rates as high as 2.5 Hz in 2D and also report the first results of 3D imaging with a non-contact label-free reflection-mode technique. The method is validated with phantom studies and in-vivo imaging. Employing a repetition rate of 600 KHz, a live feed of carbon fibers is realized with a C-scan rate of 2.5 Hz. The imaging resolution was measured to be 1.2 µm, the highest reported for a real-time reflection-mode architecture. The mean and peak SNR were measured to be 44 and 62 dB respectively in-vivo. 3D visualizations of carbon fiber phantoms and mouse ear microvasculature structure are also demonstrated. CONCLUSIONS: In summary, we present a method that has a small computational overhead for image rendering, resulting in a live display capable of real-time frame rates. We also report the first 3D imaging with a non-contact label-free reflection-mode PA technique. The all-optical confocal geometry required by PARS is significantly easier to implement and maintain than the opto-acoustic geometry of conventional PA microscopy techniques. This results in a system capable of high resolution and sensitivity, imaging at real-time rates. The authors believe this work represents a vital step towards a clinical high-resolution reflection-mode video-rate PA imaging system.

13.
Quant Imaging Med Surg ; 11(3): 1070-1077, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33654678

RESUMO

Gastrointestinal (GI) tissue biopsies provide critical diagnostic information for a wide variety of conditions such as neoplastic diseases (colorectal, small bowel and stomach cancers) and non-neoplastic diseases (inflammatory disorders, infection, celiac disease). Endoscopic biopsies collect small tissue samples that require resource intensive processing to permit histopathological analysis. Unfortunately, the sparsely collected biopsy samples may fail to capture the pathologic condition because selection of biopsy sites relies on macroscopic superficial tissue features and clinician judgement. Here, we present the first all-optical non-contact label-free non-interferometric photoacoustic microscopy system capable of performing "virtual biopsies". A modular photoacoustic remote sensing (PARS™) architecture is used facilitating imaging of unprocessed tissues providing information similar to conventional histopathological staining techniques. Prospectively this would allow gastroenterologists to assess subcellular tissue morphology in situ when selecting biopsy location. Tested on preserved unstained human and freshly resected murine tissues, the presented PARS microscope rapidly retrieves images of similar area to current biopsies, while maintaining comparable quality to the current standard for histopathological analysis. Additionally, results show the first label free assessment of subsurface cellular morphology in FFPE GI tissue blocks. Clinically relevant features are recovered including cellular details such as lamina propria within colon tissue and cell nuclear structure in resected smooth muscle. Constructed with a modular architecture, this system facilitates the future development of compact imaging heads. The modular PARS system overcomes many of the challenges with imaging unstained thick tissue in situ, representing a significant milestone in the development of a clinical microscope providing virtual biopsy capabilities.

14.
Biomed Opt Express ; 12(1): 654-665, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33659093

RESUMO

Mohs micrographic surgery (MMS) is a precise oncological technique where layers of tissue are resected and examined with intraoperative histopathology to minimize the removal of normal tissue while completely excising the cancer. To achieve intraoperative pathology, the tissue is frozen, sectioned and stained over a 20- to 60-minute period, then analyzed by the MMS surgeon. Surgery is continued one layer at a time until no cancerous cells remain, meaning MMS can take several hours to complete. Ideally, it would be desirable to circumvent or augment frozen sectioning methods and directly visualize subcellular morphology on the unprocessed excised tissues. Employing photoacoustic remote sensing (PARS) microscopy, we present a non-contact label-free reflection-mode method of performing such visualizations in frozen sections of human skin. PARS leverages endogenous optical absorption contrast within cell nuclei to provide visualizations reminiscent of histochemical staining techniques. Presented here, is the first true one to one comparison between PARS microscopy and standard histopathological imaging in human tissues. We demonstrate the ability of PARS microscopy to provide large grossing scans (>1 cm2, sufficient to visualize entire MMS sections) and regional scans with subcellular lateral resolution (300 nm).

15.
Sci Rep ; 10(1): 17211, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057037

RESUMO

Malignant brain tumors are among the deadliest neoplasms with the lowest survival rates of any cancer type. In considering surgical tumor resection, suboptimal extent of resection is linked to poor clinical outcomes and lower overall survival rates. Currently available tools for intraoperative histopathological assessment require an average of 20 min processing and are of limited diagnostic quality for guiding surgeries. Consequently, there is an unaddressed need for a rapid imaging technique to guide maximal resection of brain tumors. Working towards this goal, presented here is an all optical non-contact label-free reflection mode photoacoustic remote sensing (PARS) microscope. By using a tunable excitation laser, PARS takes advantage of the endogenous optical absorption peaks of DNA and cytoplasm to achieve virtual contrast analogous to standard hematoxylin and eosin (H&E) staining. In conjunction, a fast 266 nm excitation is used to generate large grossing scans and rapidly assess small fields in real-time with hematoxylin-like contrast. Images obtained using this technique show comparable quality and contrast to the current standard for histopathological assessment of brain tissues. Using the proposed method, rapid, high-throughput, histological-like imaging was achieved in unstained brain tissues, indicating PARS' utility for intraoperative guidance to improve extent of surgical resection.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioma/diagnóstico por imagem , Glioma/cirurgia , Microscopia/instrumentação , Procedimentos Neurocirúrgicos/instrumentação , Técnicas Fotoacústicas/instrumentação , Tecnologia de Sensoriamento Remoto/instrumentação , Técnicas Estereotáxicas/instrumentação , Cirurgia Assistida por Computador/instrumentação , Neoplasias Encefálicas/patologia , Amarelo de Eosina-(YS) , Glioma/patologia , Hematoxilina , Humanos , Processamento de Imagem Assistida por Computador/métodos , Margens de Excisão , Microscopia/métodos , Procedimentos Neurocirúrgicos/métodos , Técnicas Fotoacústicas/métodos , Tecnologia de Sensoriamento Remoto/métodos , Cirurgia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA