Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 1534, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452269

RESUMO

With people trying to keep a safe distance from others due to the COVID-19 outbreak, the way in which pedestrians walk has completely changed since the pandemic broke out1,2. In this work, laboratory experiments demonstrate the effect of several variables-such as the pedestrian density, the walking speed and the prescribed safety distance-on the interpersonal distance established when people move within relatively dense crowds. Notably, we observe that the density should not be higher than 0.16 pedestrians per square meter (around 6 m2 per pedestrian) in order to guarantee an interpersonal distance of 1 m. Although the extrapolation of our findings to other more realistic scenarios is not straightforward, they can be used as a first approach to establish density restrictions in urban and architectonic spaces based on scientific evidence.


Assuntos
Pedestres/psicologia , Distanciamento Físico , Caminhada , Adulto , COVID-19/patologia , COVID-19/virologia , Aglomeração , Feminino , Humanos , Masculino , Modelos Teóricos , SARS-CoV-2/isolamento & purificação , Velocidade de Caminhada , Adulto Jovem
2.
Phys Rev E ; 102(1-1): 012907, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32795081

RESUMO

We explore the role that the obstacle position plays in the evacuation time of agents when leaving a room. To this end, we simulate a system of nonsymmetric spherocylinders that have a prescribed desired velocity and angular orientation. In this way, we reproduce the nonmonotonous dependence of the pedestrian flow rate on the obstacle distance to the door. For short distances, the obstacle delays the evacuation because the exit size is effectively reduced; i.e., the distance between the obstacle and the wall is smaller than the door width. By increasing the obstacle distance to the door, clogging is reduced leading to an optimal obstacle position (maximum flow rate) in agreement with results reported in numerical simulations of pedestrian evacuations and granular flows. For further locations, however, a counterintuitive behavior occurs as the flow rate values fall again below the one corresponding to the case without obstacle. Analyzing the head-times distribution, we evidence that this new feature is not linked to the formation of clogs, but is caused by a reduction of the efficiency of the agent's instantaneous flow rate when the exit is not blocked.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA