Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale Adv ; 5(18): 4628-4648, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37705787

RESUMO

Retinoblastoma is the most common intraocular malignancy in children. The treatment of this rare disease is still challenging in developing countries due to delayed diagnosis. The current therapies comprise mainly surgery, radiotherapy and chemotherapy. The adverse effects of radiation and chemotherapeutic drugs have been reported to contribute to the high mortality rate and affect patients' quality of life. The systemic side effects resulting from the distribution of chemotherapeutic drugs to non-cancerous cells are enormous and have been recognized as one of the reasons why most potent anticancer compounds fail in clinical trials. Nanoparticulate delivery systems have the potential to revolutionize cancer treatment by offering targeted delivery, enhanced penetration and retention effects, increased bioavailability, and an improved toxicity profile. Notwithstanding the plethora of evidence on the beneficial effects of nanoparticles in retinoblastoma, the clinical translation of this carrier is yet to be given the needed attention. This paper reviews the current and emerging treatment options for retinoblastoma, with emphasis on recent investigations on the use of various classes of nanoparticles in diagnosing and treating retinoblastoma. It also presents the use of ligand-conjugated and smart nanoparticles in the active targeting of anticancer and imaging agents to the tumour cells. In addition, this review discusses the prospects and challenges in translating this nanocarrier into clinical use for retinoblastoma therapy. This review may provide new insight for formulation scientists to explore in order to facilitate the development of more effective and safer medicines for children suffering from retinoblastoma.

2.
J Control Release ; 354: 465-488, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642250

RESUMO

Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.


Assuntos
Sistemas de Liberação de Medicamentos , Oftalmopatias , Humanos , Oftalmopatias/tratamento farmacológico , Olho , Nanotecnologia , Lipossomos/uso terapêutico , Córnea , Administração Oftálmica
3.
Methods Microbiol ; 50: 151-188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38620863

RESUMO

The outbreak of the COVID-19 pandemic in 2019 has been one of the greatest challenges modern medicine and science has ever faced. It has affected millions of people around the world and altered human life and activities as we once knew. The high prevalence as well as an extended period of incubations which usually does not present with symptoms have played a formidable role in the transmission and infection of millions. A lot of research has been carried out on developing suitable treatment and effective preventive measures for the control of the pandemic. Preventive strategies which include social distancing, use of masks, washing of hands, and contact tracing have been effective in slowing the spread of the virus; however, the infectious nature of the SARS-COV-2 has made these strategies unable to eradicate its spread. In addition, the continuous increase in the number of cases and death, as well as the appearance of several variants of the virus, has necessitated the development of effective and safe vaccines in a bid to ensure that human activities can return to normalcy. Nanotechnology has been of great benefit in the design of vaccines as nano-sized materials have been known to aid the safe and effective delivery of antigens as well as serve as suitable adjuvants to potentiate responses to vaccines. There are only four vaccine candidates currently approved for use in humans while many other candidates are at various levels of development. This review seeks to provide updated information on the current nano-technological strategies employed in the development of COVID-19 vaccines.

4.
Ther Deliv ; 12(9): 671-683, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34374581

RESUMO

Aim: Anterior eye segment disorders are treated with eye drops and ointments, which have low ocular bioavailability necessitating the need for improved alternatives. Lipid microsuspension of gentamicin sulphate was developed for the treatment of susceptible eye diseases. Materials & methods: Lipid microsuspensions encapsulating gentamicin sulphate were produced by hot homogenization and evaluated. Ex vivo permeation and ocular irritancy tests were also conducted. Results & conclusion: Stable microsuspensions with high entrapment efficiency and satisfactory osmolarities were obtained. Release studies achieved 49-88% in vitro release at 12 h with sustained permeability of gentamicin compared with conventional gentamicin eye drop (Evril®). No irritation was observed following Draize's test. The microsuspensions have great potential as ocular delivery system of gentamicin sulphate.


Assuntos
Olho , Gentamicinas , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Lipídeos , Soluções Oftálmicas
5.
Afr Health Sci ; 20(4): 1679-1697, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34394228

RESUMO

BACKGROUND: Artemether and lumefantrine display low aqueous solubility leading to poor release profile; hence the need for the use of lipid-based systems to improve their oral bioavailability so as to improve their therapeutic efficacy. AIM AND OBJECTIVE: The objective of this work was to utilize potentials of nanostructured lipid carriers (NLCs) for improvement of the oral bioavailability of artemether and lumefantrine combination and to evaluate its efficacy in the treatment of malaria. This study reports a method of formulation, characterization and evaluation of the therapeutic efficacies of caprol-based NLC delivery systems with artemether and lumefantrine. METHOD: The artemether-lumefantrine co-loaded NLCs were prepared using the lipid matrix (5% w/w) (containing beeswax and Phospholipon® 90H and Caprol-PGE 860), artemether (0.1%w/w) and lumefantrine (0.6%w/w), sorbitol (4%w/w), Tween® 80(2%w/w as surfactant) and distilled water (q.s to 100%) by high shear homogenization and evaluated for physicochemical performance. The in vivo antimalarial activities of the NLC were tested in chloroquine-sensitive strains of Plasmodium berghei (NK-65) using Peter´s 4-day suppressive protocol in mice and compared with controls. Histopathological studies were also carried out on major organs implicated in malaria. RESULTS: The NLC showed fairly polydispersed nano-sized formulation (z-average:188.6 nm; polydispersity index, PDI=0.462) with no major interaction occurring between the components while the in vivo study showed a gradual but sustained drug release from the NLC compared with that seen with chloroquine sulphate and Coartem®. Results of histopathological investigations also revealed more organ damage with the untreated groups than groups treated with the formulations. CONCLUSION: This study has shown the potential of caprol-based NLCs for significant improvement in oral bioavailability and hence antimalarial activity of poorly soluble artemether and lumefantrine. Importantly, this would improve patient compliance due to decrease in dosing frequency as a sustained release formulation.


Assuntos
Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Combinação Arteméter e Lumefantrina/administração & dosagem , Combinação Arteméter e Lumefantrina/farmacologia , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Administração Oral , Animais , Disponibilidade Biológica , Humanos , Lipídeos , Camundongos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA