Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(27)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36958044

RESUMO

While induced spin polarization of a palladium (Pd) overlayer on antiferromagnetic and magneto-electric Cr2O3(0001) is possible because of the boundary polarization at the Cr2O3(0001), in the single domain state, the Pd thin film appears to be ferromagnetic on its own, likely as a result of strain. In the conduction band, we find the experimental evidence of ferromagnetic spin polarized in Pd thin films on a Cr2O3(0001) single crystal, especially in the thin limit, Pd thickness of around 1-4 nm. Indeed there is significant spin polarization in 10 Å thick Pd films on Cr2O3(0001) at 310 K, i.e. above the Néel temperature of bulk Cr2O3. While Cr2O3(0001) has surface moments that tend to align along the surface normal, for Pd on Cr2O3, the spin polarization contains an in-plane component. Strain in the Pd adlayer on Cr2O3(0001) appears correlated to the spin polarization measured in spin polarized inverse photoemission spectroscopy. Further evidence for magnetization of Pd on Cr2O3is provided by measurement of the exchange bias fields in Cr2O3/Pd(buffer)/[Co/Pd]nexchange bias systems. The magnitude of the exchange bias field is, over a wide temperature range, virtually unaffected by the Pd thickness variation between 1 and 2 nm.

2.
Adv Mater ; 34(12): e2105023, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34986269

RESUMO

Evidence of robust spin-dependent transport in monolayer graphene, deposited on the (0001) surface of the antiferromagnetic (AFM)/magneto-electric oxide chromia (Cr2 O3 ), is provided. Measurements performed in the non-local spin-Hall geometry reveal a robust signal that is present at zero external magnetic field and which is significantly larger than any possible ohmic contribution. The spin-related signal persists well beyond the Néel temperature (≈307 K) that defines the transition between the AFM and paramagnetic states, remaining visible at the highest studied temperature of close to 450 K. This robust character is consistent with prior theoretical studies of the graphene/Cr2 O3 system, predicting that the lifting of sub-lattice symmetry in the graphene shall induce an effective spin-orbit term of ≈40 meV. Overall, the results indicate that graphene-on-chromia heterostructures are a highly promising framework for the implementation of spintronic devices, capable of operation well beyond room temperature.

3.
Nat Commun ; 12(1): 1674, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723249

RESUMO

Multi-functional thin films of boron (B) doped Cr2O3 exhibit voltage-controlled and nonvolatile Néel vector reorientation in the absence of an applied magnetic field, H. Toggling of antiferromagnetic states is demonstrated in prototype device structures at CMOS compatible temperatures between 300 and 400 K. The boundary magnetization associated with the Néel vector orientation serves as state variable which is read via magnetoresistive detection in a Pt Hall bar adjacent to the B:Cr2O3 film. Switching of the Hall voltage between zero and non-zero values implies Néel vector rotation by 90 degrees. Combined magnetometry, spin resolved inverse photoemission, electric transport and scanning probe microscopy measurements reveal B-dependent TN and resistivity enhancement, spin-canting, anisotropy reduction, dynamic polarization hysteresis and gate voltage dependent orientation of boundary magnetization. The combined effect enables H = 0, voltage controlled, nonvolatile Néel vector rotation at high-temperature. Theoretical modeling estimates switching speeds of about 100 ps making B:Cr2O3 a promising multifunctional single-phase material for energy efficient nonvolatile CMOS compatible memory applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA