Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 15(40): 16413-16424, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37791518

RESUMO

An isotopic effect of normal (H2O) vs. heavy water (D2O) is well known to fundamentally affect the structure and chemical properties of proteins, for instance. Here, we correlate the results from small angle X-ray and neutron scattering (SAXS, SANS) with high-resolution scanning transmission electron microscopy to track the evolution of CdS nanoparticle size and crystallinity from aqueous solution in the presence of the organic ligand ethylenediaminetetraacetate (EDTA) at room temperature in both H2O and D2O. We provide evidence via SANS experiments that exchanging H2O with D2O impacts nanoparticle formation by changing the equilibria and dynamics of EDTA clusters in solution as investigated by nuclear magnetic resonance analysis. The colloidal stability of the CdS nanoparticles, covered by a layer of [Cd(EDTA)]2- complexes, is significantly reduced in D2O despite the strong stabilizing effect of EDTA in suspensions of normal water. Hence, conclusions about nanoparticle formation mechanisms from D2O solutions reveal limited transferability to reactions in normal water due to isotopic effects, which thus need to be discussed for contrast match experiments.

2.
ChemistryOpen ; 9(11): 1214-1220, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33294306

RESUMO

Applications in biomedicine and ferrofluids, for instance, require long-term colloidally stable, concentrated aqueous dispersions of magnetic, biocompatible nanoparticles. Iron oxide and related spinel ferrite nanoparticles stabilized with organic molecules allow fine-tuning of magnetic properties via cation substitution and water-dispersibility. Here, we synthesize≤5 nm iron oxide and spinel ferrite nanoparticles, capped with citrate, betaine and phosphocholine, in a one-pot strategy. We present a robust approach combining elemental (CHN) and thermal gravimetric analysis (TGA) to quantify the ratio of residual solvent molecules and organic stabilizers on the particle surface, being of particular accuracy for ligands with heteroatoms compared to the solvent. SAXS experiments demonstrate the long-term colloidal stability of our aqueous iron oxide and spinel ferrite nanoparticle dispersions for at least 3 months. By the use of SAXS we approved directly the colloidal stability of the nanoparticle dispersions for high concentrations up to 100 g L-1.

3.
Nat Commun ; 10(1): 995, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824693

RESUMO

Nanoparticles in solution interact with their surroundings via hydration shells. Although the structure of these shells is used to explain nanoscopic properties, experimental structural insight is still missing. Here we show how to access the hydration shell structures around colloidal nanoparticles in scattering experiments. For this, we synthesize variably functionalized magnetic iron oxide nanoparticle dispersions. Irrespective of the capping agent, we identify three distinct interatomic distances within 2.5 Å from the particle surface which belong to dissociatively and molecularly adsorbed water molecules, based on theoretical predictions. A weaker restructured hydration shell extends up to 15 Å. Our results show that the crystal structure dictates the hydration shell structure. Surprisingly, facets of 7 and 15 nm particles behave like planar surfaces. These findings bridge the large gap between spectroscopic studies on hydrogen bond networks and theoretical advances in solvation science.

4.
Sci Rep ; 8(1): 2567, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416097

RESUMO

Mesoporous nitrogen-doped silicon carbide catalysts with integrated cobalt nanoparticles (Co@N-SiC) were synthesized by the thermal decomposition of a microphase-separated block copolymer of polycarbosilane and polyethylene. The catalysts are highly active, reusable and offer selective hydrogenation of the nitro group in the presence of hydrogenation-sensitive functional groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA