RESUMO
Background: Temozolomide (TMZ) treatment has demonstrated, but variable, impact on glioma prognosis. This study examines associations of survival with DNA repair gene germline polymorphisms among glioma patients who did and did not have TMZ treatment. Identifying genetic markers which sensitize tumor cells to TMZ could personalize therapy and improve outcomes. Methods: We evaluated TMZ-related survival associations of pathogenic germline SNPs and genetically predicted transcript levels within 34 DNA repair genes among 1504 glioma patients from the UCSF Adult Glioma Study and Mayo Clinic whose diagnoses spanned pre- and post-TMZ eras within the major known glioma prognostic molecular subtypes. Results: Among those who received TMZ, 5 SNPs were associated with overall survival, but not in those who did not receive TMZ. Only rs2308321-G, in MGMT, was associated with decreased survival (HR=1.21, p=0.019) for all glioma subtypes. Rs73191162-T (near UNG), rs13076508-C (near PARP3), rs7840433-A (near NEIL2), and rs3130618-A (near MSH5) were only associated with survival and TMZ treatment for certain subtypes, suggesting subtype-specific germline chemo-sensitization.Genetically predicted elevated compared to normal brain expression of PNKP was associated with dramatically worse survival for TMZ-treated patients with IDH-mutant and 1p/19q non-codeleted gliomas (p=0.015). Similarly, NEIL2 and TDG expressions were associated with altered TMZ-related survival only among certain subtypes. Conclusions: Functional germline alterations within DNA repair genes were associated with TMZ sensitivity, measured by overall survival, among adults with glioma, these variants should be evaluated in prospective analyses and functional studies.
RESUMO
Glioblastoma (GBM) remains one of the most therapy-resistant malignancies with frequent local failures despite aggressive surgery, chemotherapy, and ionizing radiation (IR). Small molecule inhibitors of DNA-dependent protein kinase (DNA-PKi's) are potent radiosensitizers currently in clinical trials. Determining which patients may benefit from radiosensitization with DNA-PKi's is critical to avoid unnecessary increased risk of normal tissue toxicity. In this study we used GBM patient derived xenografts (PDXs) in orthotopic murine models to study the relationship between molecular features, pharmacokinetics, and the radiosensitizing potential of the DNA-PKi peposertib. We show that peposertib radiosensitizes established and PDX GBM lines in vitro at 300nM and above, with significant increase in radiosensitization by maintaining post-IR exposure for >12 hours. Radiosensitization by peposertib is mediated by catalytic inhibition of DNA-PK, and knock-down of DNA-PK by short hairpin RNA (shRNA) largely abolished the radiosensitizing effect. Peposertib decreased auto-phosphorylation of DNA-PKcs after IR in a dose-dependent manner with delay in resolution of γH2AX foci at 24 hours. The addition of peposertib to IR significantly increased survival in GBM120 orthotopic xenografts, but not in GBM10. There was no difference in plasma or average tumor concentrations of peposertib in the two cohorts. While the mechanism underpinning this discordant effect in vitro vs. in vivo is not clear, there was an association for greater sensitization in TP53 mutant lines. Transfection of a dominant-negative TP53 mutant in baseline TP53 wildtype GBM lines significantly delayed growth and decreased NHEJ efficiency (but not Homologous Recombination), after peposertib exposure.
RESUMO
BACKGROUND: Polygenic risk scores (PRS) aggregate the contribution of many risk variants to provide a personalized genetic susceptibility profile. Since sample sizes of glioma genome-wide association studies (GWAS) remain modest, there is a need to efficiently capture genetic risk using available data. METHODS: We applied a method based on continuous shrinkage priors (PRS-CS) to model the joint effects of over 1 million common variants on disease risk and compared this to an approach (PRS-CT) that only selects a limited set of independent variants that reach genome-wide significance (Pâ <â 5â ×â 10-8). PRS models were trained using GWAS stratified by histological (10 346 cases and 14 687 controls) and molecular subtype (2632 cases and 2445 controls), and validated in 2 independent cohorts. RESULTS: PRS-CS was generally more predictive than PRS-CT with a median increase in explained variance (R2) of 24% (interquartile rangeâ =â 11-30%) across glioma subtypes. Improvements were pronounced for glioblastoma (GBM), with PRS-CS yielding larger odds ratios (OR) per standard deviation (SD) (ORâ =â 1.93, Pâ =â 2.0â ×â 10-54 vs. ORâ =â 1.83, Pâ =â 9.4â ×â 10-50) and higher explained variance (R2â =â 2.82% vs. R2â =â 2.56%). Individuals in the 80th percentile of the PRS-CS distribution had a significantly higher risk of GBM (0.107%) at age 60 compared to those with average PRS (0.046%, Pâ =â 2.4â ×â 10-12). Lifetime absolute risk reached 1.18% for glioma and 0.76% for IDH wildtype tumors for individuals in the 95th PRS percentile. PRS-CS augmented the classification of IDH mutation status in cases when added to demographic factors (AUCâ =â 0.839 vs. AUCâ =â 0.895, PΔAUCâ =â 6.8â ×â 10-9). CONCLUSIONS: Genome-wide PRS has the potential to enhance the detection of high-risk individuals and help distinguish between prognostic glioma subtypes.
Assuntos
Neoplasias Encefálicas , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Glioma , Humanos , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Herança Multifatorial , Estudos de Casos e Controles , Fatores de Risco , Prognóstico , Polimorfismo de Nucleotídeo Único , Biomarcadores Tumorais/genética , Adulto , Idoso , Estratificação de Risco GenéticoRESUMO
PURPOSE: Antibody-drug conjugates (ADC) are targeted therapies with robust efficacy in solid cancers, and there is intense interest in using EGFR-specific ADCs to target EGFR-amplified glioblastoma (GBM). Given GBM's molecular heterogeneity, the bystander activity of ADCs may be important for determining treatment efficacy. In this study, the activity and toxicity of two EGFR-targeted ADCs with similar auristatin toxins, Losatuxizumab vedotin (ABBV-221) and Depatuxizumab mafodotin (Depatux-M), were compared in GBM patient-derived xenografts (PDX) and normal murine brain following direct infusion by convection-enhanced delivery (CED). EXPERIMENTAL DESIGN: EGFRviii-amplified and non-amplified GBM PDXs were used to determine in vitro cytotoxicity, in vivo efficacy, and bystander activities of ABBV-221 and Depatux-M. Nontumor-bearing mice were used to evaluate the pharmacokinetics (PK) and toxicity of ADCs using LC-MS/MS and immunohistochemistry. RESULTS: CED improved intracranial efficacy of Depatux-M and ABBV-221 in three EGFRviii-amplified GBM PDX models (Median survival: 125 to >300 days vs. 20-49 days with isotype control AB095). Both ADCs had comparable in vitro and in vivo efficacy. However, neuronal toxicity and CD68+ microglia/macrophage infiltration were significantly higher in brains infused with ABBV-221 with the cell-permeable monomethyl auristatin E (MMAE), compared with Depatux-M with the cell-impermeant monomethyl auristatin F. CED infusion of ABBV-221 into the brain or incubation of ABBV-221 with normal brain homogenate resulted in a significant release of MMAE, consistent with linker instability in the brain microenvironment. CONCLUSIONS: EGFR-targeting ADCs are promising therapeutic options for GBM when delivered intratumorally by CED. However, the linker and payload for the ADC must be carefully considered to maximize the therapeutic window.
Assuntos
Anticorpos Monoclonais Humanizados , Efeito Espectador , Receptores ErbB , Glioblastoma , Imunoconjugados , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glioblastoma/metabolismo , Imunoconjugados/farmacocinética , Imunoconjugados/farmacologia , Imunoconjugados/administração & dosagem , Humanos , Receptores ErbB/antagonistas & inibidores , Camundongos , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacocinética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , FemininoRESUMO
ATM is a key mediator of radiation response, and pharmacological inhibition of ATM is a rational strategy to radiosensitize tumors. AZD1390 is a brain-penetrant ATM inhibitor and a potent radiosensitizer. This study evaluated the spectrum of radiosensitizing effects and the impact of TP53 mutation status in a panel of IDH1 wild-type (WT) glioblastoma (GBM) patient-derived xenografts (PDXs). AZD1390 suppressed radiation-induced ATM signaling, abrogated G0-G1 arrest, and promoted a proapoptotic response specifically in p53-mutant GBM in vitro. In a preclinical trial using 10 orthotopic GBM models, AZD1390/RT afforded benefit in a cohort of TP53-mutant tumors but not in TP53-WT PDXs. In mechanistic studies, increased endogenous DNA damage and constitutive ATM signaling were observed in TP53-mutant, but not in TP53-WT, PDXs. In plasmid-based reporter assays, GBM43 (TP53-mutant) showed elevated DNA repair capacity compared with that in GBM14 (p53-WT), whereas treatment with AZD1390 specifically suppressed homologous recombination (HR) efficiency, in part, by stalling RAD51 unloading. Furthermore, overexpression of a dominant-negative TP53 (p53DD) construct resulted in enhanced basal ATM signaling, HR activity, and AZD1390-mediated radiosensitization in GBM14. Analyzing RNA-seq data from TCGA showed up-regulation of HR pathway genes in TP53-mutant human GBM. Together, our results imply that increased basal ATM signaling and enhanced dependence on HR represent a unique susceptibility of TP53-mutant cells to ATM inhibitor-mediated radiosensitization.
Assuntos
Glioblastoma , Piridinas , Quinolonas , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Transdução de Sinais , Reparo do DNA/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismoRESUMO
Radioresistance of melanoma brain metastases limits the clinical utility of conventionally fractionated brain radiation in this disease, and strategies to improve radiation response could have significant clinical impact. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is critical for repair of radiation-induced DNA damage, and inhibitors of this kinase can have potent effects on radiation sensitivity. In this study, the radiosensitizing effects of the DNA-PKcs inhibitor peposertib were evaluated in patient-derived xenografts of melanoma brain metastases (M12, M15, M27). In clonogenic survival assays, peposertib augmented radiation-induced killing of M12 cells at concentrations ≥100 nmol/L, and a minimum of 16 hours exposure allowed maximal sensitization. This information was integrated with pharmacokinetic modeling to define an optimal dosing regimen for peposertib of 125 mpk dosed just prior to and 7 hours after irradiation. Using this drug dosing regimen in combination with 2.5 Gy × 5 fractions of radiation, significant prolongation in median survival was observed in M12-eGFP (104%; P = 0.0015) and M15 (50%; P = 0.03), while more limited effects were seen in M27 (16%, P = 0.04). These data support the concept of developing peposertib as a radiosensitizer for brain metastases and provide a paradigm for integrating in vitro and pharmacokinetic data to define an optimal radiosensitizing regimen for potent DNA repair inhibitors.
Assuntos
Neoplasias Encefálicas , Proteína Quinase Ativada por DNA , Melanoma , Radiossensibilizantes , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/radioterapia , Camundongos , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Radiossensibilizantes/farmacologia , Radiossensibilizantes/farmacocinética , Radiossensibilizantes/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/patologia , Linhagem Celular Tumoral , Sulfonas/farmacologia , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêuticoAssuntos
Doenças Desmielinizantes , Cadeias kappa de Imunoglobulina , Humanos , Doenças Desmielinizantes/líquido cefalorraquidiano , Doenças Desmielinizantes/patologia , Cadeias kappa de Imunoglobulina/líquido cefalorraquidiano , Cadeias kappa de Imunoglobulina/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , IdosoRESUMO
Background: Polygenic risk scores (PRS) aggregate the contribution of many risk variants to provide a personalized genetic susceptibility profile. Since sample sizes of glioma genome-wide association studies (GWAS) remain modest, there is a need to find efficient ways of capturing genetic risk factors using available germline data. Methods: We developed a novel PRS (PRS-CS) that uses continuous shrinkage priors to model the joint effects of over 1 million polymorphisms on disease risk and compared it to an approach (PRS-CT) that selects a limited set of independent variants that reach genome-wide significance (P<5×10-8). PRS models were trained using GWAS results stratified by histological (10,346 cases, 14,687 controls) and molecular subtype (2,632 cases, 2,445 controls), and validated in two independent cohorts. Results: PRS-CS was consistently more predictive than PRS-CT across glioma subtypes with an average increase in explained variance (R2) of 21%. Improvements were particularly pronounced for glioblastoma tumors, with PRS-CS yielding larger effect sizes (odds ratio (OR)=1.93, P=2.0×10-54 vs. OR=1.83, P=9.4×10-50) and higher explained variance (R2=2.82% vs. R2=2.56%). Individuals in the 95th percentile of the PRS-CS distribution had a 3-fold higher lifetime absolute risk of IDH mutant (0.63%) and IDH wildtype (0.76%) glioma relative to individuals with average PRS. PRS-CS also showed high classification accuracy for IDH mutation status among cases (AUC=0.895). Conclusions: Our novel genome-wide PRS may improve the identification of high-risk individuals and help distinguish between prognostic glioma subtypes, increasing the potential clinical utility of germline genetics in glioma patient management.
RESUMO
Glioma is a highly fatal brain tumor comprised of molecular subtypes with distinct clinical trajectories. Observational studies have suggested that variability in immune response may play a role in glioma etiology. However, their findings have been inconsistent and susceptible to reverse causation due to treatment effects and the immunosuppressive nature of glioma. We applied genetic variants associated (p<5×10-8) with blood cell traits to a meta-analysis of 3418 glioma cases and 8156 controls. Genetically predicted increase in the platelet to lymphocyte ratio (PLR) was associated with an increased risk of glioma (odds ratio (OR)=1.25, p=0.005), especially in IDH-mutant (IDHmut OR=1.38, p=0.007) and IDHmut 1p/19q non-codeleted (IDHmut-noncodel OR=1.53, p=0.004) tumors. However, reduced glioma risk was observed for higher counts of lymphocytes (IDHmut-noncodel OR=0.70, p=0.004) and neutrophils (IDHmut OR=0.69, p=0.019; IDHmut-noncodel OR=0.60, p=0.009), which may reflect genetic predisposition to enhanced immune-surveillance. In contrast to susceptibility, there was no association with survival in IDHmut-noncodel; however, in IDHmut 1p/19q co-deleted tumors, we observed higher mortality with increasing genetically predicted counts of lymphocytes (hazard ratio (HR)=1.65, 95% CI: 1.24-2.20), neutrophils (HR=1.49, 1.13-1.97), and eosinophils (HR=1.59, 1.18-2.14). Polygenic scores for blood cell traits were also associated with tumor immune microenvironment features, with heterogeneity by IDH status observed for 17 signatures related to interferon signaling, PD-1 expression, and T-cell/Cytotoxic responses. In summary, we identified novel, immune-mediated susceptibility mechanisms for glioma with potential disease management implications.
RESUMO
OBJECTIVE: To describe demographic, clinical, and radiographic features of tumefactive demyelination (TD) and identify factors associated with severe attacks and poor outcomes. METHODS: Retrospective review of TD cases seen at Mayo Clinic, 1990-2021. RESULTS: Of 257 patients with TD, 183/257 (71%) fulfilled the 2017 multiple sclerosis (MS) McDonald criteria at the last follow-up, 12/257 (5%) had myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), 0 had aquaporin-4-IgG seropositive neuromyelitis optic spectrum disorders (AQP4+ NMOSD), and 62/257 (24%) were cryptogenic. Onset before age 18 was present in 18/257 (7%). Female to male ratio was 1.3:1. Cerebrospinal fluid oligoclonal (CSF) bands were present in 95/153 (62%). TD was the first demyelinating attack in 176/257 (69%). At presentation, 59/126 (47%) fulfilled Barkhof criteria for dissemination in space, 59/100 (59%) had apparent diffusion coefficient (ADC) restriction, and 57/126 (45%) had mass effect. Despite aggressive clinical presentation at onset, 181/257 (70%) of patients remained fully ambulatory (Expanded Disability Status Scale [EDSS] ≤4) after a 3.0-year median follow-up duration. Severe initial attack-related disability (EDSS ≥4) was more common in patients with motor symptoms (81/143 vs. 35/106, p < 0.0001), encephalopathy (20/143 vs. 2/106, p < 0.0001) and ADC restriction on initial MRI (42/63 vs. 15/33, p = 0.04). Poor long-term outcome (EDSS ≥4) was more common in patients with older onset age (41.9 ± 15 vs. 36.8 ± 15.6, p = 0.02) and motor symptoms at onset (49/76 vs. 66/171, p < 0.0001). INTERPRETATION: Most TD patients should be considered part of the MS spectrum after excluding MOGAD and NMOSD. Motor symptoms and older age at presentation portend a poor outcome.
Assuntos
Encefalopatias , Esclerose Múltipla , Neuromielite Óptica , Masculino , Feminino , Humanos , Estudos Retrospectivos , Neuromielite Óptica/diagnóstico , Aquaporina 4 , Esclerose Múltipla/complicaçõesRESUMO
D-2-hydroxyglutarate (D-2-HG) is a well-established oncometabolite of isocitrate dehydrogenase (IDH) mutant gliomas. While prior studies have demonstrated that D-2-HG is elevated in the cerebrospinal fluid (CSF) of patients with IDH-mutant gliomas 1,2 , no study has determined if CSF D-2-HG can provide a plausible method to evaluate therapeutic response. We are obtaining CSF samples from consenting patients during their disease course via intra-operative collection and Ommaya reservoirs. D-2-HG and D/L-2-HG consistently decreased following tumor resection and throughout chemoradiation in patients monitored longitudinally. Our early experience with this strategy demonstrates the potential for intracranial CSF D-2-HG as a monitoring biomarker for IDH-mutant gliomas.
RESUMO
Background: EGFR targeting antibody-drug conjugates (ADCs) are highly effective against EGFR-amplified tumors, but poor distribution across the blood-brain barrier (BBB) limits their efficacy in glioblastoma (GBM) when administered systemically. We studied whether convection-enhanced delivery (CED) can be used to safely infuse ADCs into orthotopic patient-derived xenograft (PDX) models of EGFRvIII mutant GBM. Methods: The efficacy of the EGFR-targeted ADCs depatuxizumab mafodotin (Depatux-M) and Serclutamab talirine (Ser-T) was evaluated in vitro and in vivo. CED was performed in nontumor and tumor-bearing mice. Immunostaining was used to evaluate ADC distribution, pharmacodynamic effects, and normal cell toxicity. Results: Dose-finding studies in orthotopic GBM6 identified single infusion of 2 µg Ser-T and 60 µg Depatux-M as safe and effective associated with extended survival prolongation (>300 days and 95 days, respectively). However, with serial infusions every 21 days, four Ser-T doses controlled tumor growth but was associated with lethal toxicity approximately 7 days after the final infusion. Limiting dosing to two infusions in GBM108 provided profound median survival extension of over 200 days. In contrast, four Depatux-M CED doses were well tolerated and significantly extended survival in both GBM6 (158 days) and GBM108 (310 days). In a toxicity analysis, Ser-T resulted in a profound loss in NeuN+ cells and markedly elevated GFAP staining, while Depatux-M was associated only with modest elevation in GFAP staining. Conclusion: CED of Depatux-M is well tolerated and results in extended survival in orthotopic GBM PDXs. In contrast, CED of Ser-T was associated with a much narrower therapeutic window.
RESUMO
Knowledge about inherited and acquired genetics of adult diffuse glioma has expanded significantly over the past decade. Genomewide association studies (GWAS) stratified by histologic subtype identified six germline variants that were associated specifically with glioblastoma (GBM) and 12 that were associated with lower grade glioma. A GWAS performed using the 2016 WHO criteria, stratifying patients by IDH mutation and 1p/19q codeletion (as well as TERT promoter mutation), discovered that many of the known variants are associated with specific WHO glioma subtypes. In addition, the GWAS stratified by molecular group identified two additional novel regions: variants in D2HGDH that were associated with tumors that had an IDH mutation and a variant near FAM20C that was associated with tumors that had both IDH mutation and 1p/19q codeletion. The results of these germline associations have been used to calculate polygenic risk scores, from which to estimate relative and absolute risk of overall glioma and risk of specific glioma subtypes. We will review the concept of polygenic risk models and their potential clinical utility, as well as discuss the published adult diffuse glioma polygenic risk models. To date, these prior genetic studies have been done on European populations. Using the published glioma polygenic risk model, we show that the genetic associations published to date do not generalize across genetic ancestries, demonstrating that genetic studies need to be done on more diverse populations.
RESUMO
INTRODUCTION: Heterozygous variants in the leptin-melanocortin pathway are associated with obesity. However, their effect on the long-term outcomes after Roux-en-Y gastric bypass (RYGB) is still unknown. METHODS: In this matched case-control study, 701 participants from the Mayo Clinic Biobank with a history of RYGB were genotyped. Sixty-three patients had a heterozygous variant in the leptin-melanocortin pathway. After excluding patients with potential confounders, carriers were randomly matched (on sex, age, body mass index [BMI], and years since surgery) with two non-carrier controls. The electronic medical record of carriers and matched non-carriers was reviewed for up to 15 years after RYGB. RESULTS: A total of 50 carriers and 100 matched non-carriers with a history of RYGB were included in the study. Seven different genes (LEPR, PCSK1, POMC, SH2B1, SRC1, MC4R, and SIM1) in the leptin-melanocortin pathway were identified. At the time of surgery, the mean age was 50.8 ± 10.6 years, BMI 45.6 ± 7.3 kg/m2, and 79% women. There were no differences in postoperative years of follow-up, Roux limb length, or gastric pouch size between groups. Fifteen years after RYGB, the percentage of total body weight loss (%TBWL) in carriers was - 16.6 ± 10.7 compared with - 28.7 ± 12.9 in non-carriers (diff = 12.1%; 95% CI, 4.8 to 19.3) and the percentage of weight regain after maximum weight loss was 52.7 ± 29.7 in carriers compared with 29.8 ± 20.7 in non-carriers (diff = 22.9%; 95% CI, 5.3 to 40.5). The nadir %TBWL was lower - 32.1 ± 8.1 in carriers compared with - 36.8 ± 10.4 in non-carriers (diff = 4.8%; 95% CI 1.8 to 7.8). CONCLUSIONS: Carriers of a heterozygous variant in the leptin-melanocortin pathway have a progressive and significant weight regain in the mid- and long-term after RYGB. Genotyping patients experiencing significant weight regain after RYGB could help implement multidisciplinary and individualized weight loss interventions to improve weight maintenance after surgery.
Assuntos
Derivação Gástrica , Obesidade Mórbida , Proteínas Adaptadoras de Transdução de Sinal , Adulto , Estudos de Casos e Controles , Feminino , Humanos , Leptina/genética , Masculino , Melanocortinas , Pessoa de Meia-Idade , Obesidade Mórbida/cirurgia , Aumento de Peso , Redução de Peso/genéticaRESUMO
Glioma is a highly fatal cancer with prognostically significant molecular subtypes and few known risk factors. Multiple studies have implicated infections in glioma susceptibility, but evidence remains inconsistent. Genetic variants in the human leukocyte antigen (HLA) region modulate host response to infection and have been linked to glioma risk. In this study, we leveraged genetic predictors of antibody response to 12 viral antigens to investigate the relationship with glioma risk and survival. Genetic reactivity scores (GRSs) for each antigen were derived from genome-wide-significant (p < 5 × 10-8) variants associated with immunoglobulin G antibody response in the UK Biobank cohort. We conducted parallel analyses of glioma risk and survival for each GRS and HLA alleles imputed at two-field resolution by using data from 3,418 glioma-affected individuals subtyped by somatic mutations and 8,156 controls. Genetic reactivity scores to Epstein-Barr virus (EBV) ZEBRA and EBNA antigens and Merkel cell polyomavirus (MCV) VP1 antigen were associated with glioma risk and survival (Bonferroni-corrected p < 0.01). GRSZEBRA and GRSMCV were associated in opposite directions with risk of IDH wild-type gliomas (ORZEBRA = 0.91, p = 0.0099/ORMCV = 1.11, p = 0.0054). GRSEBNA was associated with both increased risk for IDH mutated gliomas (OR = 1.09, p = 0.040) and improved survival (HR = 0.86, p = 0.010). HLA-DQA1∗03:01 was significantly associated with decreased risk of glioma overall (OR = 0.85, p = 3.96 × 10-4) after multiple testing adjustment. This systematic investigation of the role of genetic determinants of viral antigen reactivity in glioma risk and survival provides insight into complex immunogenomic mechanisms of glioma pathogenesis. These results may inform applications of antiviral-based therapies in glioma treatment.
Assuntos
Infecções por Vírus Epstein-Barr , Glioma , Esclerose Múltipla , Antígenos Virais , Infecções por Vírus Epstein-Barr/complicações , Glioma/complicações , Glioma/genética , Herpesvirus Humano 4/genética , Humanos , Imunogenética , Esclerose Múltipla/genéticaRESUMO
BACKGROUND: RBBP4 activates transcription by histone acetylation, but the partner histone acetyltransferases are unknown. Thus, we investigated the hypothesis that RBBP4 interacts with p300 in a complex in glioblastoma (GBM). METHODS: shRNA silencing of RBBP4 or p300 and RNAseq was used to identify genes co-regulated by RBBP4 and p300 in GBM43 patient-derived xenograft (PDX). RBBP4/p300 complex was demonstrated using proximity ligation assay (PLA) and ChIPseq delineated histone H3 acetylation and RBBP4/p300 complex binding in promoters/enhancers. Temozolomide (TMZ)-induced DNA double strand breaks (DSBs) were evaluated by γ-H2AX and proliferation by CyQuant and live cell monitoring assays. In vivo efficacy was based on survival of mice with orthotopic tumors. RESULTS: shRBBP4 and shp300 downregulated 4768 genes among which 1485 (31%) were commonly downregulated by both shRNAs, while upregulated genes were 2484, including 863 (35%) common genes. The pro-survival genes were the top-ranked among the downregulated genes, including C-MYC. RBBP4/p300 complex was demonstrated in the nucleus, and shRBBP4 or shp300 significantly sensitized GBM cells to TMZ compared to the control shNT in vitro (P < .05). Moreover, TMZ significantly prolonged the survival of mice bearing GBM22-shRBBP4 orthotopic tumors compared with control shNT tumors (median shNT survival 52 days vs. median shRBBP4 319 days; P = .001). CREB-binding protein (CBP)/p300 inhibitor CPI-1612 suppressed H3K27Ac and RBBP4/p300 complex target proteins, including C-MYC, and synergistically sensitized TMZ in vitro. Pharmacodynamic evaluation confirmed brain penetration by CPI-1612 supporting further investigation to evaluate efficacy to sensitize TMZ. CONCLUSIONS: RBBP4/p300 complex is present in GBM cells and is a potential therapeutic target.
Assuntos
Neoplasias Encefálicas , Proteína p300 Associada a E1A , Glioblastoma , Proteína 4 de Ligação ao Retinoblastoma , Acetilação , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas , Proteína 4 de Ligação ao Retinoblastoma/genética , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
INTRODUCTION: As the pandemic continues with new variants emerging, faculty and students require support with education's rapid shift to the virtual space. The Mayo Clinic Center for Clinical and Translational Science curriculum team works closely with faculty to support a smooth transition to offering graduate courses in a virtual learning environment. The aim of the present project was to explore faculty and student perceptions of these remote learning strategies to gain an understanding of the innovations required to improve future educational offerings. METHODS: All faculty and learners involved in nine Clinical and Translational Science courses in spring 2020 were invited to participate in a web-based questionnaire. Quantitative analysis was performed on closed-ended items, including 5-point Likert-scale questions used to assess the range of views. Qualitative free-text responses were independently analyzed for repetitive themes and summarized. Additionally, comparisons of faculty and course evaluations and student grade point averages (GPAs) from the in-person courses and their subsequent virtual course offerings were considered. RESULTS: Survey results indicated several positive impacts with moving courses into the virtual environment, including increased accessibility as well as more student-centered education. Learners joining from sites outside of the originating campus were especially grateful for the virtual classroom because they felt newly integrated within classes. Faculty and course evaluations, as well as student GPAs, remained consistent. CONCLUSION: New COVID-19 variants continue to shift education online, and innovative ideas are required to further improve future virtual course offerings. Increased engagement is warranted, both from faculty to incorporate activities designed specifically for a virtual classroom, and from students to increase participation by activating their microphones and webcams. Greater opportunities for global involvement and connectedness arise. Finally, this project advocates for adequate eLearning staffing to support quality online education as the need for pedagogical and technical provision continues.
RESUMO
BACKGROUND: Medulloblastoma (MB) and diffuse infiltrative pontine glioma (DIPG) are malignant pediatric tumors. Extracellular vesicles (EVs) and their bioactive cargoes have been implicated in tumorigenesis. Most studies have focused on adult tumors, therefore the role of EVs and the noncoding RNA (ncRNA) landscape in pediatric brain tumors is not fully characterized. The overall aim of this pilot study was to isolate EVs from MB and DIPG patient-derived cell lines and to explore the small ncRNA transcriptome. METHODS: EVs from 3 DIPG and 4 MB patient-derived cell lines were analyzed. High-throughput next generation sequencing interrogated the short non-coding RNA (ncRNA) transcriptome. Known and novel miRNAs were quantified. Differential expression analysis, in silico target prediction, and functional gene enrichment were performed. RESULTS: EV secretomes from MB and DIPG patient-derived cell lines demonstrated discrete ncRNA biotypes. Notably, miRNAs were depleted and Y RNAs were enriched in EV samples. Hierarchical cluster analysis revealed high discrimination in miRNA expression between DIPG and MB cell lines and RNA-Seq identified novel miRNAs not previously implicated in MB or DIPG pathogenesis. Known and putative target genes of dysregulated miRNAs were identified. Functional annotation analysis of the target genes for differentially expressed EV-and parental-derived miRNAs revealed significant cancer-related pathway involvement. CONCLUSIONS: This hypothesis-generating study demonstrated that pediatric brain tumor-derived cell lines secrete EVs comprised of various ncRNA cargoes. Validation of these findings in patient samples may provide new insights into the pediatric brain tumor microenvironment and identification of novel therapeutic candidates.