Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genome Res ; 34(7): 1106-1120, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38951025

RESUMO

Single-cell genomics permits a new resolution in the examination of molecular and cellular dynamics, allowing global, parallel assessments of cell types and cellular behaviors through development and in response to environmental circumstances, such as interaction with water and the light-dark cycle of the Earth. Here, we leverage the smallest, and possibly most structurally reduced, plant, the semiaquatic Wolffia australiana, to understand dynamics of cell expression in these contexts at the whole-plant level. We examined single-cell-resolution RNA-sequencing data and found Wolffia cells divide into four principal clusters representing the above- and below-water-situated parenchyma and epidermis. Although these tissues share transcriptomic similarity with model plants, they display distinct adaptations that Wolffia has made for the aquatic environment. Within this broad classification, discrete subspecializations are evident, with select cells showing unique transcriptomic signatures associated with developmental maturation and specialized physiologies. Assessing this simplified biological system temporally at two key time-of-day (TOD) transitions, we identify additional TOD-responsive genes previously overlooked in whole-plant transcriptomic approaches and demonstrate that the core circadian clock machinery and its downstream responses can vary in cell-specific manners, even in this simplified system. Distinctions between cell types and their responses to submergence and/or TOD are driven by expression changes of unexpectedly few genes, characterizing Wolffia as a highly streamlined organism with the majority of genes dedicated to fundamental cellular processes. Wolffia provides a unique opportunity to apply reductionist biology to elucidate signaling functions at the organismal level, for which this work provides a powerful resource.


Assuntos
Araceae , Regulação da Expressão Gênica de Plantas , Transcriptoma , Araceae/genética , Araceae/metabolismo , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
2.
Elife ; 122024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904663

RESUMO

Soil-free assays that induce water stress are routinely used to investigate drought responses in the plant Arabidopsis thaliana. Due to their ease of use, the research community often relies on polyethylene glycol (PEG), mannitol, and salt (NaCl) treatments to reduce the water potential of agar media, and thus induce drought conditions in the laboratory. However, while these types of stress can create phenotypes that resemble those of water deficit experienced by soil-grown plants, it remains unclear how these treatments compare at the transcriptional level. Here, we demonstrate that these different methods of lowering water potential elicit both shared and distinct transcriptional responses in Arabidopsis shoot and root tissue. When we compared these transcriptional responses to those found in Arabidopsis roots subject to vermiculite drying, we discovered many genes induced by vermiculite drying were repressed by low water potential treatments on agar plates (and vice versa). Additionally, we also tested another method for lowering water potential of agar media. By increasing the nutrient content and tensile strength of agar, we show the 'hard agar' (HA) treatment can be leveraged as a high-throughput assay to investigate natural variation in Arabidopsis growth responses to low water potential.


Assuntos
Arabidopsis , Raízes de Plantas , Transcriptoma , Água , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Água/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Secas , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos
4.
Bioinformatics ; 40(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38905499

RESUMO

MOTIVATION: With single-cell DNA methylation studies yielding vast datasets, existing data formats struggle with the unique challenges of storage and efficient operations, highlighting a need for improved solutions. RESULTS: BAllC (Binary All Cytosines) emerges as a tailored format for methylation data, addressing these challenges. BAllCools, its complementary software toolkit, enhances parsing, indexing, and querying capabilities, promising superior operational speeds and reduced storage needs. AVAILABILITY AND IMPLEMENTATION: https://github.com/jksr/ballcools.


Assuntos
Metilação de DNA , Análise de Célula Única , Software , Análise de Célula Única/métodos , Humanos , Biologia Computacional/métodos
5.
Neuron ; 112(15): 2524-2539.e5, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838671

RESUMO

Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors. Excitatory neurons had more profound age-related changes in their gene expression and DNA methylation than inhibitory cells. Hundreds of genes involved in synaptic activity, including EGR1, were less expressed in aged adults. Genes located in subtelomeric regions increased their expression with age and correlated with reduced telomere length. We further mapped cell-type-specific sex differences in gene expression and X-inactivation escape genes. Multi-omic single-nucleus epigenomes and transcriptomes provide new insight into the effects of age and sex on human neurons.


Assuntos
Metilação de DNA , Neurônios , Humanos , Neurônios/metabolismo , Neurônios/fisiologia , Feminino , Masculino , Adulto , Idoso , Adulto Jovem , Envelhecimento/fisiologia , Envelhecimento/genética , Caracteres Sexuais , Pessoa de Meia-Idade , Epigênese Genética , Transcriptoma , Fatores Etários , Idoso de 80 Anos ou mais , Lobo Frontal/metabolismo , Lobo Frontal/citologia , Inativação do Cromossomo X/genética , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo
6.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798507

RESUMO

Polygenic risk scores (PRSs) are commonly used for predicting an individual's genetic risk of complex diseases. Yet, their implication for disease pathogenesis remains largely limited. Here, we introduce scPRS, a geometric deep learning model that constructs single-cell-resolved PRS leveraging reference single-cell chromatin accessibility profiling data to enhance biological discovery as well as disease prediction. Real-world applications across multiple complex diseases, including type 2 diabetes (T2D), hypertrophic cardiomyopathy (HCM), and Alzheimer's disease (AD), showcase the superior prediction power of scPRS compared to traditional PRS methods. Importantly, scPRS not only predicts disease risk but also uncovers disease-relevant cells, such as hormone-high alpha and beta cells for T2D, cardiomyocytes and pericytes for HCM, and astrocytes, microglia and oligodendrocyte progenitor cells for AD. Facilitated by a layered multi-omic analysis, scPRS further identifies cell-type-specific genetic underpinnings, linking disease-associated genetic variants to gene regulation within corresponding cell types. We substantiate the disease relevance of scPRS-prioritized HCM genes and demonstrate that the suppression of these genes in HCM cardiomyocytes is rescued by Mavacamten treatment. Additionally, we establish a novel microglia-specific regulatory relationship between the AD risk variant rs7922621 and its target genes ANXA11 and TSPAN14. We further illustrate the detrimental effects of suppressing these two genes on microglia phagocytosis. Our work provides a multi-tasking, interpretable framework for precise disease prediction and systematic investigation of the genetic, cellular, and molecular basis of complex diseases, laying the methodological foundation for single-cell genetics.

7.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38328094

RESUMO

DNA methylation (DNAm), a crucial epigenetic mark, plays a key role in gene regulation, mammalian development, and various human diseases. Single-cell technologies enable the profiling of DNAm states at cytosines within the DNA sequence of individual cells, but they often suffer from limited coverage of CpG sites. In this study, we introduce scMeFormer, a transformer-based deep learning model designed to impute DNAm states for each CpG site in single cells. Through comprehensive evaluations, we demonstrate the superior performance of scMeFormer compared to alternative models across four single-nucleus DNAm datasets generated by distinct technologies. Remarkably, scMeFormer exhibits high-fidelity imputation, even when dealing with significantly reduced coverage, as low as 10% of the original CpG sites. Furthermore, we applied scMeFormer to a single-nucleus DNAm dataset generated from the prefrontal cortex of four schizophrenia patients and four neurotypical controls. This enabled the identification of thousands of differentially methylated regions associated with schizophrenia that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia within specific cell types. Our study highlights the power of deep learning in imputing DNAm states in single cells, and we expect scMeFormer to be a valuable tool for single-cell DNAm studies.

8.
Nature ; 625(7996): 750-759, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38200311

RESUMO

Iron is critical during host-microorganism interactions1-4. Restriction of available iron by the host during infection is an important defence strategy, described as nutritional immunity5. However, this poses a conundrum for externally facing, absorptive tissues such as the gut epithelium or the plant root epidermis that generate environments that favour iron bioavailability. For example, plant roots acquire iron mostly from the soil and, when iron deficient, increase iron availability through mechanisms that include rhizosphere acidification and secretion of iron chelators6-9. Yet, the elevated iron bioavailability would also be beneficial for the growth of bacteria that threaten plant health. Here we report that microorganism-associated molecular patterns such as flagellin lead to suppression of root iron acquisition through a localized degradation of the systemic iron-deficiency signalling peptide Iron Man 1 (IMA1) in Arabidopsis thaliana. This response is also elicited when bacteria enter root tissues, but not when they dwell on the outer root surface. IMA1 itself has a role in modulating immunity in root and shoot, affecting the levels of root colonization and the resistance to a bacterial foliar pathogen. Our findings reveal an adaptive molecular mechanism of nutritional immunity that affects iron bioavailability and uptake, as well as immune responses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Bactérias , Peptídeos e Proteínas de Sinalização Intracelular , Ferro , Moléculas com Motivos Associados a Patógenos , Raízes de Plantas , Arabidopsis/imunologia , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Arabidopsis/metabolismo , Bactérias/imunologia , Bactérias/metabolismo , Flagelina/imunologia , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ferro/metabolismo , Imunidade Vegetal , Raízes de Plantas/imunologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Brotos de Planta/imunologia , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Rizosfera , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo
10.
bioRxiv ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38187559

RESUMO

Somatic mutations alter the genomes of a subset of an individual's brain cells1-3, impacting gene regulation and contributing to disease processes4,5. Mosaic single nucleotide variants have been characterized with single-cell resolution in the brain2,3, but we have limited information about large-scale structural variation, including whole-chromosome duplication or loss1,6,7. We used a dataset of over 415,000 single-cell DNA methylation and chromatin conformation profiles across the adult mouse brain to identify aneuploid cells comprehensively. Whole-chromosome loss or duplication occurred in <1% of cells, with rates up to 1.8% in non-neuronal cell types, including oligodendrocyte precursors and pericytes. Among all aneuploidies, we observed a strong enrichment of trisomy on chromosome 16, which is syntenic with human chromosome 21 and constitutively trisomic in Down syndrome. Chromosome 16 trisomy occurred in multiple cell types and across brain regions, suggesting that nondisjunction is a recurrent feature of somatic variation in the brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA